Makakuha ng mga payo ng eksperto at detalyadong mga sagot sa IDNStudy.com. Magtanong ng anumang bagay at makatanggap ng detalyadong sagot mula sa aming komunidad ng mga eksperto.

Find the slope of the tangent line to the graph of x=–7y^3+6y–3 at (–2,–1).

Sagot :

[tex]\large\underline{\mathbb{QUESTION}:}[/tex]

Find the slope of the tangent line to the graph of x=–7y³ + 6y – 3 at (–2,–1).

[tex]\large\underline{\mathbb{ANSWER}:}[/tex]

  • [tex]\sf \: -\dfrac{1}{15}[/tex]

[tex]\large\underline{\mathbb{SOLUTION}:}[/tex]

A function y of a variable x may be given in one of two ways: explicitly or implicitly.

An explicit function y of a variable x is defined by an equation of the form y = f(x). An implicit function y of a variable x satisfies an equation between x and y in which y is not isolated.

The derivative of a function provides a rule to find the slope of the tangent line to the graph of that function.

To differentiate an implicit function y with respect to x:

  • Differentiate both sides of the equation
  • Solve for y'

To differentiate yⁿ, use this formula:

  • [tex]\sf \:(y^{n}) ' = ny^{n-1} y'[/tex]

The slope of the tangent line to a graph at a point is the value of y′ at that point.

The equation x = –7y³ + 6y – 3 defines y as an implicit function of x since y is not isolated. To find y′, first differentiate both sides of the equation.

    [tex]\sf \: x=7y^{3} +6y-3[/tex]

[tex]\sf \: (x)' =(7y^{3} +6y-3)'[/tex]

[tex]\sf \: (x)'=(7y^{3})' +(6y)'-(3)'[/tex]

    [tex]\sf \: 1=-21y^{2} y'+6y'[/tex]

Next, plug in x = –2 and y = –1. Then, solve for y′.

      [tex]\sf \: 1=-21(1)^{2} y'+6y'[/tex]

      [tex]\sf \: 1=-15y'[/tex]

[tex]\sf \: -\dfrac{1}{15} =y'[/tex]

So the slope of the tangent line is [tex]\sf \: -\dfrac{1}{15}[/tex].

====================================

#CarryOnLearning