Makahanap ng mga solusyon sa iyong mga problema sa tulong ng mga eksperto ng IDNStudy.com. Alamin ang mga detalyadong sagot sa iyong mga tanong mula sa aming malawak na kaalaman sa mga eksperto.

zeros of a function
Find the zeros of f(x) = x² + 5x + 6​


Sagot :

You find the zeros by solving the equation [tex]\sf{f(x)\:=\:x²\:+\:5x\:+\:6\:=\:0:}[/tex]

[tex]\begin{gathered}\sf \: x = \dfrac{-5\:±\:\sqrt{25\:-\:4\:·\:1\:·\:6}}{2} \\ \\ \sf \: = \dfrac{-5\:±\:\sqrt{25\:-\:24}}{2} \\ \\ \sf \: = \dfrac{-5\:±\:1}{2} \end{gathered}[/tex]

This gives

[tex]\begin{gathered}\sf \: x₁ = \dfrac{-5\:-\:1}{2} = -3, \\ \\ \sf \: x₂ = \dfrac{-5\:+\:1}{2} = -2. \end{gathered}[/tex]

So the graph meets the x-axis in i [tex]\sf{(-3,\:0)}[/tex] and [tex]\sf{(-2,\:0)}[/tex].

[tex]\:[/tex]

Zeros of a Function

The zeros or roots of a function tell us where a graph intersects the x-axis. Since we're talking about intersection with the x-axis, you know that y = 0. That means that you can find the zeros by solving the equation f(x) = 0.

[tex]\:[/tex]

Rule

Zeros

You find the zeros of a function by solving the equation

[tex]\sf{ \: \: \: \: f(x)\:=\:0.}[/tex]

[tex]\:[/tex]

The sign chart of f(x) tells you when the graph of f is above or below the x-axis, and where f(x) intersects the x-axis.

[tex]\:\:\:\:\:\:\:\: \boxed{\sf{See\:the\:picture}}[/tex]

[tex]\:[/tex]

#CarryOnLearning

View image SirGowblin