Makakuha ng mga sagot sa iyong mga pinakamahahalagang tanong sa IDNStudy.com. Magtanong at makatanggap ng eksaktong sagot mula sa aming mga bihasang miyembro ng komunidad.
Sagot :
Given :
- Perimeter of rectangle = 140cm
- Length is 10cm long than width.
[tex] \\ \\ [/tex]
To find :-
- Length of rectangle
- Width of rectangle
[tex] \\ \\ [/tex]
Solution:-
So let take width as x.
{why width as x? , cause it's clearly visible that width is smaller than Length, so we will take width as x}
[tex] \\ [/tex]
and Length as x + 10.
{why Length is x + 10 and not 10x? , cause they have told 10 cm more not 10 times, If it would be 10 times then surely it would be 10x.
[tex] \\ [/tex]
Now Let's further exceed.
[tex] \\ [/tex]
We know:-
[tex] \bigstar \boxed{ \rm perimeter \: of \: rectangle = 2(length + width)}[/tex]
[tex] \\ \\ [/tex]
So:-
[tex] \\ [/tex]
[tex] \dashrightarrow \small\sf perimeter \: of \: rectangle = 2(length + width) \\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow \small\sf 140= 2(x + 10 + x) \\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow \small\sf 140= 2( \underbrace{x +x }+ 10 ) \\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow \small\sf 140= 2( 2x+ 10 ) \\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow \small\sf 140 \div 2= ( 2x+ 10 ) \\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow \small\sf \frac{70 \times 2}{2} = ( 2x+ 10 ) \\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow \small\sf \frac{70 \times \cancel2}{\cancel2} = ( 2x+ 10 ) \\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow \small\sf 70= ( 2x+ 10 ) \\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow \small\sf ( 2x+ 10 ) = 7 0 \\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow \small\sf 2x+ 10 = 7 0 \\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow \small\sf 2x= 7 0 - 10\\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow \small\sf 2x= 60\\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow \small\sf x= 60 \div 2\\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow \small\sf x= \dfrac{60}{2} \\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow \small\sf x= \dfrac{30 \times 2}{2} \\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow \small\sf x= \dfrac{30 \times \cancel2}{\cancel2} \\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow \small\bold{ x= 30}[/tex]
[tex] \\ \\ [/tex]
- Width = x
- Width = 30 cm
[tex] \\ [/tex]
- Length = 10 + x
- Length = 10 + 30
- Length = 40 cm
DIMENSIONS
==================================
[tex]\large\sf\underline{Problem:} [/tex]
- The perimeter of a rectangle is 140 cm. If the length is longer than width by 10 cm, find its dimensions.
==================================
[tex]\large\sf\underline{Answer:}[/tex]
[tex] \qquad \qquad \qquad \huge \rm \: l = 10 \\ \qquad \qquad \qquad\huge \rm \: w = 60[/tex]
==================================
[tex]\large\sf\underline{Solution:}[/tex]
Determine the dimensions of the rectangle using the formula of perimeter.
- [tex]\bold{Formula\:||\:P = 2L + 2W}[/tex]
suppose the perimeter is 140 square centimeter and the length is 10 centimeter.Fill in the perimeter equation. It will look like this:
- [tex]\rm 140 = 2(10) + 2(W).[/tex]
Multiply the "2 by 10" on the right side of the equation, and you will now have
- [tex]\rm 140 = 20 + 2(W). [/tex]
- [tex]\rm 120 = 2(W) [/tex]
- [tex]\rm W = 60[/tex]
Therefore,the final answer is Width = 60. So the dimensions of the rectangle are 10 cm for each of the lengths and 60 cm for each of the widths.
To check if the dimensions are true;
- [tex]\rm P = 2(L) + 2(W) [/tex]
- [tex]\rm P = 2(10) + 2(60) [/tex]
- [tex]\rm P = 20 + 120[/tex]
- [tex]\rm P = 140 [/tex]
Hence, the equation is correct.
==================================
#CarryOnLearning
ヾ(^-^)ノ
Ang iyong kontribusyon ay mahalaga sa amin. Huwag kalimutang bumalik upang magtanong at matuto ng mga bagong bagay. Ang iyong kaalaman ay napakahalaga sa ating komunidad. Ang IDNStudy.com ay nangako na sasagutin ang lahat ng iyong mga tanong. Salamat at bisitahin kami palagi.