Kaatxyidn
Answered

Makahanap ng mga solusyon at sagot sa lahat ng iyong katanungan sa IDNStudy.com. Magtanong ng anumang bagay at makatanggap ng detalyadong sagot mula sa aming komunidad ng mga eksperto.

The wall of a cube shaped pool measures 6 meters on one side how much water can it hold when full

Sagot :

So here one side of a cube is given.

[tex] \\ [/tex]

And we have to find Amount of water we can fill in that cube. that means , we have to find volume of a cube.

[tex] \\ [/tex]

We know:-

[tex] \bigstar \boxed{ \rm volume \: of \: cube = {side}^{3} }[/tex]

[tex] \\ [/tex]

So:-

[tex] \\ \\ [/tex]

[tex] \dashrightarrow\sf volume \: of \: cube = {side}^{3} \\ [/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow\sf volume \: of \: cube = {6}^{3} \\ [/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow\sf volume \: of \: cube = 6 \times 6 \times 6 \\ [/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow\sf volume \: of \: cube = \underbrace{ 6 \times 6 }\times 6 \\ [/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow\sf volume \: of \: cube = 36\times 6 \\ [/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow\bold{ volume \: of \: cube = \underline{ \underline{216 \: \: m}}} \\ [/tex]

[tex] \\ \\ \\ [/tex]

know more:-

[tex]\begin{gathered}\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc}\small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bold{CSA_{(cylinder)} = 2\pi \: rh}\\ \\\bigstar \: \bold{Volume_{(cylinder)} = \pi {r}^{2} h}\\ \\ \bigstar \: \bold{TSA_{(cylinder)} = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bold{CSA_{(cone)} = \pi \: r \: l}\\ \\ \bigstar\: \bold{TSA_{(cone)} = \pi \: r \: (l + r)}\\ \\ \bigstar \: \bold{Volume_{(sphere)} = \dfrac{4}{3}\pi {r}^{3} }\\ \\ \bigstar \: \bold{Volume_{(cube)} ={(side)}^{3} }\\ \\ \bigstar \: \bold{CSA_{(cube)} = 4 {(side)}^{2} }\\ \\ \bigstar \: \bold{TSA_{(cube)} = 6 {(side)}^{2} }\\ \\\bigstar \: \bold{Volume_{(cuboid)} = lbh}\\ \\ \bigstar \: \bold{CSA_{(cuboid)} = 2(l + b)h}\\ \\ \bigstar \: \bold{TSA_{(cuboid)} = 2(lb +bh+hl )}\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}\end{gathered}[/tex]