Vertices (3, 8) and (15, -4) are opposite vertices connect by a segment to form a diagonal. The diagonals of a square are congruent.
Distance Formula:
D [tex]= \sqrt{(x _{2}-x_{1}) ^{2}+ (y_{2}-y_{1} )^{2} } [/tex]
[tex]x _{1}= 3 [/tex]
[tex]x _{2} =15[/tex]
[tex]y _{1} =8[/tex]
[tex]y_{2} =-4[/tex]
D = [tex] \sqrt{(15-3) ^{2}+(-4-8) ^{2} } [/tex]
D = [tex] \sqrt{(12) ^{2}+(12) ^{2} } [/tex]
D = [tex] \sqrt{144+144} [/tex]
D = [tex] \sqrt{288} [/tex]
D = [tex] \sqrt{(16)(18)} [/tex]
D = [tex]4 \sqrt{(9)(2)} [/tex]
D = [tex](4)(3) \sqrt{2} [/tex]
D = [tex]12 \sqrt{2} [/tex] The length of each diagonal of the square