IDNStudy.com, ang iyong destinasyon para sa malinaw at mabilis na mga sagot. Makakuha ng mga kumpletong sagot sa lahat ng iyong mga tanong mula sa aming network ng mga eksperto.
Sagot :
Sum of series in Arithmetic Sequence:
[tex]S_{n} = \frac{n}{2} (a _{1} + a _{n}) [/tex]
Where:
[tex]S _{n} [/tex] = is the sum of the series
n = term in a series ⇒ ?
[tex]a _{1} [/tex] = is the first term, 2
[tex]a _{n} [/tex] = is the last term, 28
Arithmetic series = {x/x is an even number<30}
Arithmetic sequence: {2, 4,...,28}
Even number, multiple of 2: the common difference (d) is 2
1) First, find the number of terms in the series
[tex]a _{n} = a _{1} + (n-1)(d)[/tex]
28 = 2 + (n-1)(2)
28 = 2 + 2n - 2
28 = 2n
28/2 = 2n/2
n = 14
The number of terms from 2 to 28 is 14.
2) Solve for the sum of the series:
[tex]S _{n} = \frac{14}{2} (2 + 28) [/tex]
[tex]S _{n}= 7 (30) [/tex]
[tex]S _{n} [/tex] = 210
The sum of the even numbers from 2 to 28 is 210.
[tex]S_{n} = \frac{n}{2} (a _{1} + a _{n}) [/tex]
Where:
[tex]S _{n} [/tex] = is the sum of the series
n = term in a series ⇒ ?
[tex]a _{1} [/tex] = is the first term, 2
[tex]a _{n} [/tex] = is the last term, 28
Arithmetic series = {x/x is an even number<30}
Arithmetic sequence: {2, 4,...,28}
Even number, multiple of 2: the common difference (d) is 2
1) First, find the number of terms in the series
[tex]a _{n} = a _{1} + (n-1)(d)[/tex]
28 = 2 + (n-1)(2)
28 = 2 + 2n - 2
28 = 2n
28/2 = 2n/2
n = 14
The number of terms from 2 to 28 is 14.
2) Solve for the sum of the series:
[tex]S _{n} = \frac{14}{2} (2 + 28) [/tex]
[tex]S _{n}= 7 (30) [/tex]
[tex]S _{n} [/tex] = 210
The sum of the even numbers from 2 to 28 is 210.
Salamat sa iyong kontribusyon. Patuloy na magbahagi ng iyong karanasan at kaalaman. Ang iyong ambag ay napakahalaga sa aming komunidad. May mga katanungan ka? Ang IDNStudy.com ang may sagot. Bisitahin kami palagi para sa pinakabagong impormasyon.