Tuklasin kung paano ka matutulungan ng IDNStudy.com na makuha ang mga sagot na kailangan mo. Sumali sa aming platform upang makatanggap ng mabilis at eksaktong tugon mula sa mga propesyonal sa iba't ibang larangan.
Sagot :
Sum of series in Arithmetic Sequence:
[tex]S_{n} = \frac{n}{2} (a _{1} + a _{n}) [/tex]
Where:
[tex]S _{n} [/tex] = is the sum of the series
n = term in a series ⇒ ?
[tex]a _{1} [/tex] = is the first term, 2
[tex]a _{n} [/tex] = is the last term, 28
Arithmetic series = {x/x is an even number<30}
Arithmetic sequence: {2, 4,...,28}
Even number, multiple of 2: the common difference (d) is 2
1) First, find the number of terms in the series
[tex]a _{n} = a _{1} + (n-1)(d)[/tex]
28 = 2 + (n-1)(2)
28 = 2 + 2n - 2
28 = 2n
28/2 = 2n/2
n = 14
The number of terms from 2 to 28 is 14.
2) Solve for the sum of the series:
[tex]S _{n} = \frac{14}{2} (2 + 28) [/tex]
[tex]S _{n}= 7 (30) [/tex]
[tex]S _{n} [/tex] = 210
The sum of the even numbers from 2 to 28 is 210.
[tex]S_{n} = \frac{n}{2} (a _{1} + a _{n}) [/tex]
Where:
[tex]S _{n} [/tex] = is the sum of the series
n = term in a series ⇒ ?
[tex]a _{1} [/tex] = is the first term, 2
[tex]a _{n} [/tex] = is the last term, 28
Arithmetic series = {x/x is an even number<30}
Arithmetic sequence: {2, 4,...,28}
Even number, multiple of 2: the common difference (d) is 2
1) First, find the number of terms in the series
[tex]a _{n} = a _{1} + (n-1)(d)[/tex]
28 = 2 + (n-1)(2)
28 = 2 + 2n - 2
28 = 2n
28/2 = 2n/2
n = 14
The number of terms from 2 to 28 is 14.
2) Solve for the sum of the series:
[tex]S _{n} = \frac{14}{2} (2 + 28) [/tex]
[tex]S _{n}= 7 (30) [/tex]
[tex]S _{n} [/tex] = 210
The sum of the even numbers from 2 to 28 is 210.
Pinahahalagahan namin ang bawat ambag mo. Magpatuloy sa pagtatanong at pagbibigay ng mga sagot. Sama-sama tayong magtutulungan upang makamit ang mas mataas na antas ng karunungan. Sa IDNStudy.com, kami ay nangako na magbigay ng pinakamahusay na mga sagot. Salamat at sa muling pagkikita.