Tuklasin ang mundo ng kaalaman at mga sagot mula sa komunidad sa IDNStudy.com. Makakuha ng hakbang-hakbang na mga gabay para sa lahat ng iyong teknikal na tanong mula sa mga miyembro ng aming komunidad na may kaalaman.

The sum of two positive numbers is 5 and the sum of their cubes is 35. What is the sum of their squares?

Sagot :

The two numbers: x and y
x + y = 5     ⇒    y = 5 - x

Representation:
x = first number
5 - x = second number

Sum of their cubes:
(x)³ + (5-x)³ = 35
x³ + 125 - 75x + 15x² - x³ = 35
x³ - x² + 15x² - 75x + 125 = 35
15x² - 75x + 125 = 35

Transform to Quadratic Equation form, ax² + bx + c = 0
15x²  - 75x + 125 - 35 = 0
15x² - 75x + 90 = 0

Factor out the GCF of each term: 15
15 ( x² - 5x + 6) = 0

Factor x² - 5x + 6:
(x - 2) (x - 3) = 0

x - 2 = 0
x = 2

x - 3 = 0
x = 3

The two positive numbers are 2 and 3

The sum of their squares:
Sum of their squares = (2)² + (3)² 
Sum of their squares = 4 + 9
Sum of their squares = 13

The sum of the squares of the 2 and 3 is 13.

To check:
Sum of the two positive numbers 2 and 3 is 5
2 + 3 = 5

Sum of the cubes of the two positive numbers 2 and 3 is 35.
(2)³ + (3)³ = 35
(2)(2)(2) + (3)(3)(3) = 35
8 + 27 = 35
35 = 35
Maraming salamat sa iyong pakikilahok. Patuloy na magbahagi ng iyong mga ideya at kasagutan. Ang iyong kaalaman ay mahalaga sa ating komunidad. Ang IDNStudy.com ay nangako na sasagutin ang lahat ng iyong mga tanong. Salamat at bisitahin kami palagi.