Sumali sa komunidad ng IDNStudy.com at simulang makuha ang mga sagot. Sumali sa aming komunidad ng mga bihasa upang makahanap ng mga sagot na kailangan mo sa anumang paksa o problema.

Find the slope given the pairs of points and give it's trend.


1. (7,3) and (10 , 12)
2. (-3,7) and (1,5)​


Sagot :

Slope From Two Points

  • (7,3) and (10,12)

[tex]M=\frac{rise}{run}=\frac{ᐃy}{ᐃx}[/tex]

[tex]M=\frac{y2 - y1}{x2-x1}[/tex]

[tex]M=\frac{12-3}{10-7}[/tex]

[tex]M=\frac{9}{3}[/tex]

[tex]\large\color{blue}\boxed{M=3}[/tex]

  • (-3,7) and (1,5)

[tex]M=\frac{rise}{run}=\frac{ᐃy}{ᐃx}[/tex]

[tex]M=\frac{y2 - y1}{x2-x1}[/tex]

[tex]M=\frac{5-7}{1-(-3)}[/tex]

[tex]M=\frac{-2}{4}[/tex]

[tex]\large\color{blue}\boxed{M=\frac{-2}{4}}[/tex]

[tex]\large{•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]

#CarryOnLearning

[tex] \color{red}\underline { \huge{\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: }}[/tex]

[tex]\underline{\mathbb{DIRECTION}:}[/tex]

  • Find the slope given the pairs of points and give it's trend.

[tex]\qquad \qquad \sf \rm \: 1) \: (7,3) \: and \: (10 , 12) \\ \qquad \qquad\sf \rm 2) \: (-3,7) \: and \: (1,5)[/tex]

[tex]\color{red}\underline { \huge{\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: }}[/tex]

[tex]\underline{\mathbb{SOLUTION}:}[/tex]

» When using two points , we can solve the slope using the rate of change in y and the change in x.

[tex]\sf \boxed{\qquad \sf \small \: Slope (m) = \frac{change \: in \: y}{change \: in \: x } = \frac{y_2 - y_1}{x_2 - x_1}}[/tex]

[tex] \sf 1.) \: Given : P_1(7,3) \: ; \: P_2 (10,12) \\ \sf \:\qquad\qquad \small \: Slope (m) = \frac{change \: in \: y}{change \: in \: x } = \frac{y_2 - y_1}{x_2 - x_1} \\ \sf \small \: m = \frac{12 - 3}{10 - 7} \\ \sf \small \: m = \frac{9}{3} \\ \sf \boxed { \red { \sf \: m=3}}[/tex]

[tex]\therefore[/tex]Therefore, the slope [tex]\bold \red{(m)}[/tex] is [tex]\bold \red{3}[/tex].

[tex]\therefore[/tex] Trend : Increasing.

[tex]\color{red}\underline { \huge{\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: }}[/tex]

[tex] \sf Given : P_1( - 3,7) \: ; \: P_2 (1,5) \\ \sf \:\qquad\qquad \small \: Slope (m) = \frac{change \: in \: y}{change \: in \: x } = \frac{y_2 - y_1}{x_2 - x_1} \\ \sf \small \: m = \frac{5 - 7}{1 - ( - 3)} \\ \sf \small \: m = \frac{ - 2}{ 4} \\ \sf \boxed { \red { \sf \: m= \frac{ -2 }{4} }}[/tex]

[tex]\therefore[/tex]Therefore, the slope [tex]\bold \red{(m)}[/tex] is [tex]\bold \red { \frac{ - 2}{4} }[/tex].

[tex]\therefore[/tex] Trend : decreasing.

======

The slope tells us the trend of the linear equations.

  • » If the slope is positive [tex]\bold \red{(+)}[/tex] , the line is increasing from left to right.

  • » If the slope is negative [tex]\bold \red{(-)}[/tex] , the line is decreasing from left to right.

[tex]\color{red}\underline { \huge{\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: }}[/tex]

If you have any question regarding to my answer, don't hesitate to ask me.

#CarryOnLearning

૮₍ ˃ ⤙ ˂ ₎ა