IDNStudy.com, ang iyong mapagkakatiwalaang mapagkukunan para sa eksaktong at maaasahang mga sagot. Tuklasin ang mga maaasahang impormasyon sa anumang paksa sa pamamagitan ng aming network ng bihasang mga propesyonal.

Find the interval where the fiction defined by f(x)=x³-6x²+9x+1 is increasing,decreasing

Sagot :

Differentiate f(x) = x³-6x²+9x+1
[tex] \frac{d}{dx} ( x^{3} -6x ^{2} +9x+1)[/tex]

Solution for each term:
[tex] \frac{d}{dx} (x^{3} ) = (3)x^{3-1} = 3 x^{2} [/tex]

[tex] \frac{d}{dx}(-6(2)x ^{2-1} ) = -12x[/tex]

[tex] \frac{d}{dx} (9(1)x^{1-1} ) = 9[/tex]

[tex] \frac{d}{dx} (1) = 0[/tex]

Simplify:
f(x)=(3x²-12x+9) ⇒ 3 (x²-4x+3) ⇒ 3(x-3)(x-1)

Stationary Points:
x-3 = 0               x-1 = 0
x = 3                  x = 1

INTERVALS:
(-∞,1)   (1,3)   (3,∞)

Increasing at intervals (-∞,1) and (3,∞)

Decreasing at interval (1,3)

(Note:  It's easier to solve for the intervals with derivatives than by factoring or zero theorem for the given function, avoiding the irrational complex numbers not necessary to what you required.)