IDNStudy.com, ang platform na nag-uugnay ng mga tanong sa mga sagot ng eksperto. Makakuha ng hakbang-hakbang na mga gabay para sa lahat ng iyong teknikal na tanong mula sa mga miyembro ng aming komunidad na may kaalaman.

given the center and the radius of the circle, write the standard form and general form of the equation of the circle​

Given The Center And The Radius Of The Circle Write The Standard Form And General Form Of The Equation Of The Circle class=

Sagot :

✒️CIRCLE EQUATIONS

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{ANSWER}:} [/tex]

Standard Form:

[tex] \quad \large \rm 1) \; (x-4)^2 + (y-5)^2 = 4 [/tex]

[tex] \quad \large \rm 2) \; (x-3)^2 + (y+2)^2 = 9 [/tex]

General Form:

[tex] \quad \large \rm 1) \; x² + y² - 8x - 10y + 37 = 0 [/tex]

[tex] \quad \large \rm 2) \; x² + y² - 6x + 4y + 4 = 0 [/tex]

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{SOLUTION}:} [/tex]

First, write the equation of the circle in standard form that is written as:

  • [tex] (x-h)^2 + (y-k)^2 = r^2 [/tex]

Where (h,k) is the center and r is the radius. After that, rearrange it into general form that is written as:

  • [tex] x^2 + y^2 + Ax + By + C = 0 [/tex]

Substitute the given center and radius to determine its equations.

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

Number 1:

Substitute (4,5) as the center and 2 as the radius to determine the equation in standard form.

  • [tex] (x-4)^2 + (y-5)^2 = 2^2 [/tex]

  • [tex] (x-4)^2 + (y-5)^2 = 4 [/tex]

Therefore, the equation of the given circle in standard form is (x-4)² + (y-5)² = 4. Expand and rearrange the terms to get the general form.

  • [tex] \small (x-4)^2 + (y-5)^2 = 4 [/tex]

  • [tex] \small x^2 - 8x + 16 + y^2 - 10y + 25 = 4 [/tex]

  • [tex] \small x^2 + y^2 - 8x - 10y + 16 + 25 - 4 = 0 [/tex]

  • [tex] \small x^2 + y^2 - 8x - 10y + 41 - 4 = 0 [/tex]

  • [tex] \small x^2 + y^2 - 8x - 10y + 37 = 0 [/tex]

Therefore, the equation of the given circle in general form is + - 8x - 10y + 37 = 0

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

Number 1:

Substitute (4,5) as the center and 2 as the radius to determine the equation in standard form.

  • [tex] (x-3)^2 + \big[y-(\text-2)\big]^2 = 3^2 [/tex]

  • [tex] (x-3)^2 + (y+2)^2 = 9 [/tex]

Therefore, the equation of the given circle in standard form is (x-3)² + (y+2)² = 9. Expand and rearrange the terms to get the general form.

  • [tex] \small (x-3)^2 + (y+2)^2 = 9 [/tex]

  • [tex] \small x^2 - 6x + 9 + y^2 + 4y + 4 = 9 [/tex]

  • [tex] \small x^2 + y^2 - 6x + 4y + 9 + 4 - 9 = 0 [/tex]

  • [tex] \small x^2 + y^2 - 6x + 4y + 13 - 9 = 0 [/tex]

  • [tex] \small x^2 + y^2 - 6x + 4y + 4 = 0 [/tex]

Therefore, the equation of the given circle in general form is x² + y² - 6x + 4y + 4 = 0

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

(ノ^_^)ノ