Liaazeidn
Answered

IDNStudy.com, ang iyong platform ng sanggunian para sa pangkomunidad na mga sagot. Hanapin ang mga solusyong kailangan mo nang mabilis at tiyak sa tulong ng aming mga bihasang miyembro.

C. Solve the following

1. [ -2 0 4.
3 -10 12.
3 -2 -2 ]

+

[ -4 6 0
-15 2 -4
6 7 1 ]

2. [ 3 -4
0 2 ]

+
[ 4 6 8
0 2 4 ]

3. [ 2 -18
20 -15 ]

-

[ -4 2
-5 1 ]

4. [ -3 10 2
-10 8 -6
0 1 0 ]

-

[ 5 4 3
2 1 0
-8 -10 -4 ]

5. [ 0 0 ] - [ 0 0 ]​


Sagot :

✒️EQUATION

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

\large\underline{\mathbb{ANSWER}:}

ANSWER:

\qquad \large \rm x^2 + y^2 + 4x - 2y - 11 = 0x

2

+y

2

+4x−2y−11=0

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

\large\underline{\mathbb{SOLUTION}:}

SOLUTION:

\begin{gathered}\begin{aligned} & \bold{Formula:} \\ & \quad {\rm Midpoint = \bigg(\frac{y_1+y_2}2,\, \frac{x_1+x_2}2\bigg)} \end{aligned} \end{gathered}

Formula:

Midpoint=(

2

y

1

+y

2

,

2

x

1

+x

2

)

\begin{gathered} \rm M = \bigg(\frac{\text-2+(\text-2)}2,\, \frac{5+(\text-3)}2 \bigg) \\ \end{gathered}

M=(

2

-2+(-2)

,

2

5+(-3)

)

\begin{gathered}\rm M = \bigg(\frac{\text-2-2}2,\, \frac{5-3}2 \bigg) \\ \end{gathered}

M=(

2

-2−2

,

2

5−3

)

\begin{gathered}\rm M = \bigg(\frac{\,\text-4\,}2,\, \frac{\,2\,}2 \bigg) \\ \end{gathered}

M=(

2

-4

,

2

2

)

\begin{gathered} \rm M = (\text-2, \,1) \\ \end{gathered}

M=(-2,1)

- Thus, the center of the circle is at (-2, 1).

\large\tt{(x-h)^2 + (y-k)^2 = r^2}(x−h)

2

+(y−k)

2

=r

2

-Where (h,k) is the center and r is the radius.

\large\tt[x-(\text-2)\big]^2 + (y-1)^2 = r^2[x−(-2)]

2

+(y−1)

2

=r

2

\large\tt(x+2)^2 + (y-1)^2 = r^2(x+2)

2

+(y−1)

2

=r

2

-Find the square of the radius.

(\text-2+2)^2 + (5-1)^2 = r^2(-2+2)

2

+(5−1)

2

=r

2

(0)^2 + (4)^2 = r^2(0)

2

+(4)

2

=r

2

0 + 16 = r^20+16=r

2

16 = r^216=r

2

(x+2)^2 + (y-1)^2 = 16(x+2)

2

+(y−1)

2

=16

-Now for the general form the equation.

x^2 + y^2 + Ax + By + C = 0x

2

+y

2

+Ax+By+C=0

\small (x+2)^2 + (y-1)^2 = 16(x+2)

2

+(y−1)

2

=16

\small x^2 + 4x + 4 + y^2 - 2y + 1 = 16x

2

+4x+4+y

2

−2y+1=16

\small x^2 + y^2 + 4x - 2y + 4 + 1 - 16 = 0x

2

+y

2

+4x−2y+4+1−16=0

\small x^2 + y^2 + 4x - 2y + 5 - 16 = 0x

2

+y

2

+4x−2y+5−16=0

\small x^2 + y^2 + 4x - 2y - 11 = 0x

2

+y

2

+4x−2y−11=0

- Therefore, the general form of the equation is

\large\text{ x² + y² + 4x - 2y - 11 = 0} x² + y² + 4x - 2y - 11 = 0

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

tell me if I'm wrong po