IDNStudy.com, ang iyong platform ng sanggunian para sa pangkomunidad na mga sagot. Hanapin ang mga solusyong kailangan mo nang mabilis at tiyak sa tulong ng aming mga bihasang miyembro.
Sagot :
✒️EQUATION
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
\large\underline{\mathbb{ANSWER}:}
ANSWER:
\qquad \large \rm x^2 + y^2 + 4x - 2y - 11 = 0x
2
+y
2
+4x−2y−11=0
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
\large\underline{\mathbb{SOLUTION}:}
SOLUTION:
\begin{gathered}\begin{aligned} & \bold{Formula:} \\ & \quad {\rm Midpoint = \bigg(\frac{y_1+y_2}2,\, \frac{x_1+x_2}2\bigg)} \end{aligned} \end{gathered}
Formula:
Midpoint=(
2
y
1
+y
2
,
2
x
1
+x
2
)
\begin{gathered} \rm M = \bigg(\frac{\text-2+(\text-2)}2,\, \frac{5+(\text-3)}2 \bigg) \\ \end{gathered}
M=(
2
-2+(-2)
,
2
5+(-3)
)
\begin{gathered}\rm M = \bigg(\frac{\text-2-2}2,\, \frac{5-3}2 \bigg) \\ \end{gathered}
M=(
2
-2−2
,
2
5−3
)
\begin{gathered}\rm M = \bigg(\frac{\,\text-4\,}2,\, \frac{\,2\,}2 \bigg) \\ \end{gathered}
M=(
2
-4
,
2
2
)
\begin{gathered} \rm M = (\text-2, \,1) \\ \end{gathered}
M=(-2,1)
- Thus, the center of the circle is at (-2, 1).
\large\tt{(x-h)^2 + (y-k)^2 = r^2}(x−h)
2
+(y−k)
2
=r
2
-Where (h,k) is the center and r is the radius.
\large\tt[x-(\text-2)\big]^2 + (y-1)^2 = r^2[x−(-2)]
2
+(y−1)
2
=r
2
\large\tt(x+2)^2 + (y-1)^2 = r^2(x+2)
2
+(y−1)
2
=r
2
-Find the square of the radius.
(\text-2+2)^2 + (5-1)^2 = r^2(-2+2)
2
+(5−1)
2
=r
2
(0)^2 + (4)^2 = r^2(0)
2
+(4)
2
=r
2
0 + 16 = r^20+16=r
2
16 = r^216=r
2
(x+2)^2 + (y-1)^2 = 16(x+2)
2
+(y−1)
2
=16
-Now for the general form the equation.
x^2 + y^2 + Ax + By + C = 0x
2
+y
2
+Ax+By+C=0
\small (x+2)^2 + (y-1)^2 = 16(x+2)
2
+(y−1)
2
=16
\small x^2 + 4x + 4 + y^2 - 2y + 1 = 16x
2
+4x+4+y
2
−2y+1=16
\small x^2 + y^2 + 4x - 2y + 4 + 1 - 16 = 0x
2
+y
2
+4x−2y+4+1−16=0
\small x^2 + y^2 + 4x - 2y + 5 - 16 = 0x
2
+y
2
+4x−2y+5−16=0
\small x^2 + y^2 + 4x - 2y - 11 = 0x
2
+y
2
+4x−2y−11=0
- Therefore, the general form of the equation is
\large\text{ x² + y² + 4x - 2y - 11 = 0} x² + y² + 4x - 2y - 11 = 0
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
tell me if I'm wrong po
Ang iyong aktibong pakikilahok ay mahalaga sa amin. Magpatuloy sa pagtatanong at pagbahagi ng iyong nalalaman. Sama-sama tayong lumikha ng isang komunidad ng karunungan. Salamat sa pagpili sa IDNStudy.com. Umaasa kami na makita ka ulit para sa mas maraming solusyon.