IDNStudy.com, ang platform na nag-uugnay ng mga tanong sa mga solusyon. Tuklasin ang malawak na hanay ng mga paksa at makahanap ng maaasahang sagot mula sa mga bihasang miyembro ng aming komunidad.

(with solution)
Activity 1: Write the following equations of a circle to their general forms.
1. (x + 4)² + (y – 7)² = 100
2. (x - 1)² + (y - 4) ²= 64
3. (x - 2)² + (y - 1)² = 11²
4. (x + 1)² + (y + 2)² = 25
5. (x - 2)² + (y - 4)² = 72 ​ ​ ​ ​


Sagot :

EQUATION OF A CIRCLE

[tex]\red{\overline{\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}[/tex]

Center-radius Form:

[tex](x-h)^2+(y-k)^2=r^2[/tex]

General Form:

[tex]x^2+y^2+Cx+Dy+E=0[/tex]

☞ The given equations are in center-radius (standard) form. To change it to its general form, we will expand the equations and simplify.

[tex]\\[/tex]

1. (x + 4)² + (y – 7)² = 100

[tex] \tt (x + 4) ^{2} + (y - 7) ^{2} = 100 \\ \tt {x}^{2} + 8x + 16 + {y}^{2} - 14y + 49 = 100 \\ \tt {x}^{2} + 8x + {y}^{2} - 14y + 65 = 100 \\ \tt {x}^{2} + {y}^{2} + 8x - 14y + 65 = 100 \\ \tt {x}^{2} + {y}^{2} + 8x - 14y + 65 - 100 = 0 \\ \boxed{ \red{\tt {x}^{2} + {y}^{2} + 8x - 14y - 35 = 0}}[/tex]

[tex]\\[/tex]

2. (x - 1)² + (y - 4) ²= 64

[tex] \tt(x - 1) ^{2} + {(y - 4)}^{2} = 64 \\ \tt {x}^{2} - 2x + 1 + {y}^{2} - 8y + 16 = 64 \\ \tt {x}^{2} - 2x + {y}^{2} - 8y + 17 = 64 \\ \tt {x}^{2} + {y}^{2} - 2x - 8y + 17 = 64 \\ \tt {x}^{2} + {y}^{2} - 2x - 8y + 17- 64 = 0 \\ \boxed{ \red{ \tt {x }^{2} + {y}^{2} - 2x - 8y - 47 = 0 }}[/tex]

[tex]\\[/tex]

3. (x - 2)² + (y - 1)² = 11²

[tex] \tt{(x - 2)}^{2} + {(y - 1)}^{2} = {11}^{2} \\ \tt {(x - 2)}^{2} + {(y - 1)}^{2} = 121 \\ \tt {x}^{2} - 4x + 4 + {y}^{2} - 2y + 1 = 121 \\ \tt {x}^{2} - 4x + {y}^{2} - 2y + 5 = 121 \\ \tt {x}^{2} + {y}^{2} - 4x - 2y + 5 = 121 \\ \tt {x}^{2} + {y}^{2} - 4x - 2y + 5 - 121 = 0 \\ \boxed{ \red{ \tt {x}^{2} + {y}^{2} - 4x - 2y - 116 = 0 }}[/tex]

[tex]\\[/tex]

4. (x + 1)² + (y + 2)² = 25

[tex] \tt(x + 1 {)}^{2} + (y + 2 {)}^{2} = 25 \\ \tt {x}^{2} + 2x + 1 + {y}^{2} + 4y + 4 = 25 \\ \tt {x}^{2} + 2x + {y}^{2} + 4y + 5 = 25 \\ \tt {x}^{2} + {y}^{2} + 2x + 4y + 5 = 25 \\ \tt {x}^{2} + {y}^{2} + 2x + 4y + 5 - 25 = 0 \\ \boxed{ \red{ \tt {x}^{2} + {y}^{2} + 2x + 4y - 20 = 0}}[/tex]

[tex]\\[/tex]

5. (x - 2)² + (y - 4)² = 72

[tex] \tt(x - 2 {)}^{2} + (y - 4) ^{2} = 72 \\ \tt {x}^{2} - 4x + 4 + {y}^{2} - 8y + 16 = 72 \\ \tt {x}^{2} - 4x + {y}^{2} - 8y + 20 = 72 \\ \tt {x}^{2} + {y}^{2} - 4x - 8y + 20 = 72 \\ \tt {x}^{2} + {y}^{2} - 4x - 8y + 20 - 72 = 0 \\ \boxed{ \red{ \tt {x}^{2} + {y}^{2} - 4x - 8y - 52 = 0 }}[/tex]

[tex]\\[/tex]

[tex]\small{\textsf{Red text are the answers}}[/tex]

[tex]\red{\overline{\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}[/tex]

ᜎ᜔