Sumali sa IDNStudy.com para sa detalyadong mga sagot sa iyong mga tanong. Magtanong ng anumang bagay at makatanggap ng agarang tugon mula sa aming dedikadong komunidad ng mga eksperto.

(with solution)
Activity 1: Write the following equations of a circle to their general forms.
1. (x + 4)² + (y – 7)² = 100
2. (x - 1)² + (y - 4) ²= 64
3. (x - 2)² + (y - 1)² = 11²
4. (x + 1)² + (y + 2)² = 25
5. (x - 2)² + (y - 4)² = 72 ​ ​ ​ ​


Sagot :

EQUATION OF A CIRCLE

[tex]\red{\overline{\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}[/tex]

Center-radius Form:

[tex](x-h)^2+(y-k)^2=r^2[/tex]

General Form:

[tex]x^2+y^2+Cx+Dy+E=0[/tex]

☞ The given equations are in center-radius (standard) form. To change it to its general form, we will expand the equations and simplify.

[tex]\\[/tex]

1. (x + 4)² + (y – 7)² = 100

[tex] \tt (x + 4) ^{2} + (y - 7) ^{2} = 100 \\ \tt {x}^{2} + 8x + 16 + {y}^{2} - 14y + 49 = 100 \\ \tt {x}^{2} + 8x + {y}^{2} - 14y + 65 = 100 \\ \tt {x}^{2} + {y}^{2} + 8x - 14y + 65 = 100 \\ \tt {x}^{2} + {y}^{2} + 8x - 14y + 65 - 100 = 0 \\ \boxed{ \red{\tt {x}^{2} + {y}^{2} + 8x - 14y - 35 = 0}}[/tex]

[tex]\\[/tex]

2. (x - 1)² + (y - 4) ²= 64

[tex] \tt(x - 1) ^{2} + {(y - 4)}^{2} = 64 \\ \tt {x}^{2} - 2x + 1 + {y}^{2} - 8y + 16 = 64 \\ \tt {x}^{2} - 2x + {y}^{2} - 8y + 17 = 64 \\ \tt {x}^{2} + {y}^{2} - 2x - 8y + 17 = 64 \\ \tt {x}^{2} + {y}^{2} - 2x - 8y + 17- 64 = 0 \\ \boxed{ \red{ \tt {x }^{2} + {y}^{2} - 2x - 8y - 47 = 0 }}[/tex]

[tex]\\[/tex]

3. (x - 2)² + (y - 1)² = 11²

[tex] \tt{(x - 2)}^{2} + {(y - 1)}^{2} = {11}^{2} \\ \tt {(x - 2)}^{2} + {(y - 1)}^{2} = 121 \\ \tt {x}^{2} - 4x + 4 + {y}^{2} - 2y + 1 = 121 \\ \tt {x}^{2} - 4x + {y}^{2} - 2y + 5 = 121 \\ \tt {x}^{2} + {y}^{2} - 4x - 2y + 5 = 121 \\ \tt {x}^{2} + {y}^{2} - 4x - 2y + 5 - 121 = 0 \\ \boxed{ \red{ \tt {x}^{2} + {y}^{2} - 4x - 2y - 116 = 0 }}[/tex]

[tex]\\[/tex]

4. (x + 1)² + (y + 2)² = 25

[tex] \tt(x + 1 {)}^{2} + (y + 2 {)}^{2} = 25 \\ \tt {x}^{2} + 2x + 1 + {y}^{2} + 4y + 4 = 25 \\ \tt {x}^{2} + 2x + {y}^{2} + 4y + 5 = 25 \\ \tt {x}^{2} + {y}^{2} + 2x + 4y + 5 = 25 \\ \tt {x}^{2} + {y}^{2} + 2x + 4y + 5 - 25 = 0 \\ \boxed{ \red{ \tt {x}^{2} + {y}^{2} + 2x + 4y - 20 = 0}}[/tex]

[tex]\\[/tex]

5. (x - 2)² + (y - 4)² = 72

[tex] \tt(x - 2 {)}^{2} + (y - 4) ^{2} = 72 \\ \tt {x}^{2} - 4x + 4 + {y}^{2} - 8y + 16 = 72 \\ \tt {x}^{2} - 4x + {y}^{2} - 8y + 20 = 72 \\ \tt {x}^{2} + {y}^{2} - 4x - 8y + 20 = 72 \\ \tt {x}^{2} + {y}^{2} - 4x - 8y + 20 - 72 = 0 \\ \boxed{ \red{ \tt {x}^{2} + {y}^{2} - 4x - 8y - 52 = 0 }}[/tex]

[tex]\\[/tex]

[tex]\small{\textsf{Red text are the answers}}[/tex]

[tex]\red{\overline{\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}[/tex]

ᜎ᜔