IDNStudy.com, ang iyong destinasyon para sa malinaw at mabilis na mga sagot. Tuklasin ang mga maaasahang impormasyon sa anumang paksa sa pamamagitan ng aming network ng bihasang mga propesyonal.

A house number begins with two letters. If the possible letters are A, B, C, D and E, how many different permutations of these letters can be made if no letter is used more than once?

Sagot :

Answer:

20

Step-by-step explanation:

The formula for permutation is  [tex]nPr = \frac{n!}{(n-r!)}[/tex]

n = the total number of objects

r = the total number of objects selected

In your given problem, there are five possible letters in total. n = 5

Each number begins with two letters. r = 2

Substitute the numbers in the formula.

[tex]nPr = \frac{5!}{(5-2!)}[/tex]

The answer will be 20.