Suriin ang malawak na saklaw ng mga paksa at makakuha ng mga sagot sa IDNStudy.com. Ang aming komunidad ay handang magbigay ng malalim at maaasahang mga sagot, anuman ang kahirapan ng iyong mga katanungan.

What is the equation of a circle with ends of diameter at (-1,-4) and (9,6)?​

Sagot :

✒️CIRCLE EQUATION

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{ANSWER}:} [/tex]

[tex] \qquad \large \:\: \rm (x-4)^2 + (y-1)^2 = 50 [/tex]

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{SOLUTION}:} [/tex]

The center of the circle is the midpoint of the diameter segment. Find the midpoint between the endpoints of the diameter.

[tex] \begin{align} & \bold{Formula:} \\ & \quad \boxed{\rm Midpoint = \bigg(\frac{x_1+x_2}2,\,\frac{y_1+y_2}2\bigg)} \end{align} [/tex]

  • [tex] \rm Midpoint = \bigg(\frac{\text-1+9}2,\,\frac{\text-4+6}2 \bigg) \\ [/tex]

  • [tex] \rm Midpoint = \bigg(\frac{\,8\,}2,\,\frac{\,2\,}2 \bigg) \\ [/tex]

  • [tex] \rm Midpoint = (4, \,1) [/tex]

Thus, the center of the circle is at (4, 1). Substitute it to the equation of the circle in standard form that is written as:

  • [tex] (x-h)^2 + (y-k)^2 = r^2 [/tex]

Where (h,k) is the center and r is the radius of the circle.

  • [tex] (x-4)^2 + (y-1)^2 = r^2 [/tex]

Find the square of the radius by substituting one of the given endpoints of the diameter. We will be using (9,6).

  • [tex] (9-4)^2 + (6-1)^2 = r^2 [/tex]

  • [tex] (5)^2 + (5)^2 = r^2 [/tex]

  • [tex] 25 + 25 = r^2 [/tex]

  • [tex] 50 = r^2 [/tex]

Substitute the square of the radius to the given equation with the given center.

  • [tex] (x-4)^2 + (y-1)^2 = 50 [/tex]

Therefore, the equation of the circle in standard form is (x-4)² + (y-1)² = 50

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

(ノ^_^)ノ

CIRCLE EQUATION

[tex]\huge\bold{✒Solution:}[/tex]

[tex]\blue{•••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]

According to the question, the center of circle [tex] \mathtt{( \frac{ - 1 + 9}{2}, \frac{ - 4 + 6}{2}) \implies \: (4,1)}[/tex] and the diameter:

[tex] \mathtt{\sqrt{ (- 1 - 9)^{2} + ( - 4 - 6)^{2} }}[/tex]

[tex] •\: \mathtt{ \sqrt{100 + 100} }[/tex]

[tex]• \: \mathtt{10 \sqrt{2} }[/tex]

So the radius : [tex] \mathtt{ 5\sqrt{2} }[/tex]

So the equation : [tex] \mathtt{(x - 4) ^{2} + (y - 1)^{2} = ( 5\sqrt{2})^{2} = 50}[/tex]

[tex]\blue{•••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]

[tex]\huge\bold{✒Answer:}[/tex]

[tex]\blue{•••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]

Therefore, the equation of the circle in standard form is (x - 4)² + (y - 1)² = 50

[tex]\blue{•••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]

(ノ^_^)ノ