IDNStudy.com, ang iyong destinasyon para sa malinaw at mabilis na mga sagot. Magtanong ng anumang bagay at makatanggap ng detalyadong sagot mula sa aming komunidad ng mga eksperto.

What is the equation of a circle with ends of diameter at (-1,-4) and (9,6)?​

Sagot :

✒️CIRCLE EQUATION

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{ANSWER}:} [/tex]

[tex] \qquad \large \:\: \rm (x-4)^2 + (y-1)^2 = 50 [/tex]

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{SOLUTION}:} [/tex]

The center of the circle is the midpoint of the diameter segment. Find the midpoint between the endpoints of the diameter.

[tex] \begin{align} & \bold{Formula:} \\ & \quad \boxed{\rm Midpoint = \bigg(\frac{x_1+x_2}2,\,\frac{y_1+y_2}2\bigg)} \end{align} [/tex]

  • [tex] \rm Midpoint = \bigg(\frac{\text-1+9}2,\,\frac{\text-4+6}2 \bigg) \\ [/tex]

  • [tex] \rm Midpoint = \bigg(\frac{\,8\,}2,\,\frac{\,2\,}2 \bigg) \\ [/tex]

  • [tex] \rm Midpoint = (4, \,1) [/tex]

Thus, the center of the circle is at (4, 1). Substitute it to the equation of the circle in standard form that is written as:

  • [tex] (x-h)^2 + (y-k)^2 = r^2 [/tex]

Where (h,k) is the center and r is the radius of the circle.

  • [tex] (x-4)^2 + (y-1)^2 = r^2 [/tex]

Find the square of the radius by substituting one of the given endpoints of the diameter. We will be using (9,6).

  • [tex] (9-4)^2 + (6-1)^2 = r^2 [/tex]

  • [tex] (5)^2 + (5)^2 = r^2 [/tex]

  • [tex] 25 + 25 = r^2 [/tex]

  • [tex] 50 = r^2 [/tex]

Substitute the square of the radius to the given equation with the given center.

  • [tex] (x-4)^2 + (y-1)^2 = 50 [/tex]

Therefore, the equation of the circle in standard form is (x-4)² + (y-1)² = 50

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

(ノ^_^)ノ

CIRCLE EQUATION

[tex]\huge\bold{✒Solution:}[/tex]

[tex]\blue{•••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]

According to the question, the center of circle [tex] \mathtt{( \frac{ - 1 + 9}{2}, \frac{ - 4 + 6}{2}) \implies \: (4,1)}[/tex] and the diameter:

[tex] \mathtt{\sqrt{ (- 1 - 9)^{2} + ( - 4 - 6)^{2} }}[/tex]

[tex] •\: \mathtt{ \sqrt{100 + 100} }[/tex]

[tex]• \: \mathtt{10 \sqrt{2} }[/tex]

So the radius : [tex] \mathtt{ 5\sqrt{2} }[/tex]

So the equation : [tex] \mathtt{(x - 4) ^{2} + (y - 1)^{2} = ( 5\sqrt{2})^{2} = 50}[/tex]

[tex]\blue{•••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]

[tex]\huge\bold{✒Answer:}[/tex]

[tex]\blue{•••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]

Therefore, the equation of the circle in standard form is (x - 4)² + (y - 1)² = 50

[tex]\blue{•••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]

(ノ^_^)ノ