Makakuha ng mabilis at pangkomunidad na mga sagot sa IDNStudy.com. Ang aming komunidad ay nagbibigay ng eksaktong sagot upang matulungan kang maunawaan at malutas ang anumang problema.

Paki answer po ASAP Thanks po ​

Paki Answer Po ASAP Thanks Po class=

Sagot :

✏️POWER THEOREMS

[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]

[tex]\underline{\mathbb{ANSWERS:}}[/tex]

[tex]\qquad\LARGE \rm » \: \: 1. \: \green{x ≈ 6.67}[/tex]

[tex]\qquad\LARGE \rm » \: \: 2. \: \green{x = 8}[/tex]

[tex]\qquad\LARGE \rm » \: \: 3. \: \green{x ≈ 11.25}[/tex]

[tex]\qquad\LARGE \rm » \: \: 4. \: \green{x ≈ 12.83}[/tex]

[tex]\qquad\LARGE \rm » \: \: 5. \: \green{x = 2}[/tex]

[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]

[tex]\underline{\mathbb{SOLUTIONS:}}[/tex]

#1. Solve the value of x by applying the Chord-Chord Power Theorem.

  • [tex](LS)(GS) = (AS)(FS)[/tex]

  • [tex](3)(x) = (4)(5)[/tex]

  • [tex]3x = 20[/tex]

  • [tex] \frac{ \cancel3x}{ \cancel3} = \frac{20}{3} \\ [/tex]

  • [tex]x ≈ 6.67[/tex]

[tex]\therefore[/tex] The length of the segment x is 6.67 units

[tex]\rm[/tex]

#2. Solve for x by applying the Chord-Chord Power Theorem again.

  • [tex](GE)(IE) = (UE)(DE)[/tex]

  • [tex](x)(6) = (4)(12)[/tex]

  • [tex]6x = 48[/tex]

  • [tex] \frac{ \cancel6x}{ \cancel6} = \frac{48}{6} \\ [/tex]

  • [tex]x = 8[/tex]

[tex]\therefore[/tex] The length of the segment x is 8 units.

[tex]\rm[/tex]

#3. Solve for x by applying the Secant-Secant Power Theorem.

  • [tex](IS)(IH) = (IF + FT)(FT)[/tex]

  • [tex](16)(x) = (8 + 10)(10)[/tex]

  • [tex]16x = (18)(10)[/tex]

  • [tex]16x = 180[/tex]

  • [tex]\frac{\cancel{16}x}{\cancel{16}}= \frac{180}{16}\\[/tex]

  • [tex]x ≈ 11.25[/tex]

[tex]\therefore[/tex] The length of the segment x is 11.25 units.

[tex]\rm[/tex]

#4. Solve for x by applying the Secant-Secant Power Theorem again.

  • [tex](AS)(AN) = (AE + JE)(JE) [/tex]

  • [tex](12)(x) = (4 + 11)(11)[/tex]

  • [tex]12x = (14)(11)[/tex]

  • [tex]12x = 154[/tex]

  • [tex]\frac{\cancel{12}x}{\cancel{12}}= \frac{154}{12}\\[/tex]

  • [tex]x ≈ 12.83[/tex]

[tex]\therefore[/tex] The length of the segment x is 12.83 units.

[tex]\rm[/tex]

#5. Solve for x by applying the Secant-Secant Power Theorem again.

  • [tex](GA +MA)(MA) = (GI)(IC)[/tex]

  • [tex](x + 6)(6) = (6)(8)[/tex]

  • [tex]6x + 36 = 48[/tex]

  • [tex]6x = 48 - 36[/tex]

  • [tex]6x = 12[/tex]

  • [tex]\frac{\cancel{6}x}{\cancel6}= \frac{12}{6}\\[/tex]

  • [tex]x = 2[/tex]

[tex]\therefore[/tex] The length of the segment x is 2 units.

[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]

#CarryOnLearning