Tuklasin ang mundo ng kaalaman at mga sagot mula sa komunidad sa IDNStudy.com. Magtanong at makakuha ng detalyadong sagot mula sa aming komunidad ng mga eksperto.
Sagot :
[tex]\huge{\underline{\boxed{{\pmb{\sf{ \: ROOTS \: }}}}}}[/tex]
────────────────────────────
Answer: [tex]\boxed{\sf{33 + 8\sqrt{17}}}[/tex]
SOLUTION:
» The number 1 is the neutral multiplication factor, so we can write that:
- [tex]\sf 1 = \frac{\sqrt{17}+4}{\sqrt{17}-4}[/tex]
» Multiply expression above by the given number.
- [tex]\sf \frac{\sqrt{17}+4}{\sqrt{17}-4} \times 1 = \frac{\sqrt{17}+4}{\sqrt{17}-4} \times \frac{\sqrt{17}+4}{\sqrt{17}+4} =[/tex]
- [tex]\sf \frac{(\sqrt{17}+4) \times (\sqrt{17}+4)}{(\sqrt{17}-4) \times (\sqrt{17}+4}[/tex]
» We will use the short multiplication formula:
- [tex]\sf (a - b)(a + b) = a^2 - b^2[/tex]
» When we multiply the given number by 1, we can use the short multiplication formula in the fraction's denominator.
- [tex]\sf \frac{(\sqrt{17}+4) \times (\sqrt{17}+4)}{(\blue{\sqrt{17}-4}) \blue{\times} (\blue{\sqrt{17}+4})}[/tex]
- [tex] = \frac{(\sqrt{17}+4)^2}{(\sqrt{17})^2 - (4)^2}[/tex]
- [tex]\sf = \frac{(\sqrt{17}+4)^2}{17 - 16}[/tex]
- [tex]\sf = \frac{(\sqrt{17}+4)^2}{1}[/tex]
- [tex]\sf = (\sqrt{17}+4)^2[/tex]
» Now you can find the result:
- [tex]\sf (\sqrt{17}+4)^2 = 17 + 8\sqrt{17} + 16 = [/tex]
- [tex]\sf 33 + 8\sqrt{17}[/tex]
────────────────────────────
Salamat sa iyong kontribusyon. Patuloy na magbahagi ng impormasyon at karanasan. Sama-sama tayong magtatagumpay sa ating layunin. IDNStudy.com ang iyong mapagkakatiwalaang kasama para sa lahat ng iyong mga katanungan. Bisitahin kami palagi.