Suriin ang IDNStudy.com at makakuha ng mga sagot sa iyong mga tanong sa iba't ibang paksa. Hanapin ang mga solusyong kailangan mo nang mabilis at tiyak sa tulong ng aming mga bihasang miyembro.
Sagot :
✏️CIRCLE
[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]
[tex]\underline{\mathbb{PROBLEM:}}[/tex]
- The area of the sector is 180m². Find the value of [tex] \theta[/tex] in terms of pi with the radius is 9m.
[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]
[tex]\underline{\mathbb{ANSWER:}}[/tex]
[tex] \qquad \LARGE \rm» \: \: \green{\theta = 800\pi\degree} [/tex]
[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]
[tex]\underline{\mathbb{SOLUTION:}}[/tex]
- By Using the formula, find the central angle of the circle with the sector area is 180m² and the radius is 9m.
[tex]\begin{aligned}&\bold{\color{lightblue}Formula:}\\&\boxed{A_{sec} = \frac{ \theta}{360 \degree} \cdot \pi {r}^{2} }\end{aligned} [/tex]
- [tex]\begin{aligned}{180 {m}^{2} = \frac{ \theta}{360 \degree} \cdot \pi(9m)^{2} }\end{aligned} [/tex]
- [tex]\begin{aligned}{180 {m}^{2} = \frac{ \theta}{360 \degree} \cdot \pi(81 {m}^{2} ) }\end{aligned} [/tex]
- [tex]\begin{aligned}{180 {m}^{2}(360) = \frac{ \theta}{ \cancel{360 \degree}} \cdot \pi(81 {m}^{2} ) \cancel{(360)} }\end{aligned} [/tex]
- [tex]64800 {m}^{2} = \theta \cdot81{m}^{2} \pi[/tex]
- [tex]64800 {m}^{2} =81{m}^{2} \pi \theta[/tex]
- [tex] \frac{64800 \cancel{{m}^{2}}}{81 \cancel{{m}^{2}} \pi} = \frac{ \cancel{81{m}^{2} \pi }\theta}{ \cancel{81{m}^{2} \pi}} \\ [/tex]
- [tex]800\pi = \theta [/tex]
[tex]\therefore[/tex] The central angle of the circle is 800π degrees.
[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]
#CarryOnLearning
Natutuwa kami na ikaw ay bahagi ng aming komunidad. Magpatuloy sa pagtatanong at pagbibigay ng mga sagot. Sama-sama tayong lumikha ng isang masiglang komunidad ng pagkatuto. Ang IDNStudy.com ang iyong mapagkakatiwalaang mapagkukunan ng mga sagot. Salamat at bumalik ka ulit.