Suriin ang IDNStudy.com at makakuha ng mga sagot sa iyong mga tanong sa iba't ibang paksa. Hanapin ang mga solusyong kailangan mo nang mabilis at tiyak sa tulong ng aming mga bihasang miyembro.

1. The diagram shows a sector of a circle. The area of the sector is 180m2. Find the value of O in terms of pi. 9m​

Sagot :

✏️CIRCLE

[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]

[tex]\underline{\mathbb{PROBLEM:}}[/tex]

  • The area of the sector is 180m². Find the value of [tex] \theta[/tex] in terms of pi with the radius is 9m.

[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]

[tex]\underline{\mathbb{ANSWER:}}[/tex]

[tex] \qquad \LARGE \rm» \: \: \green{\theta = 800\pi\degree} [/tex]

[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]

[tex]\underline{\mathbb{SOLUTION:}}[/tex]

- By Using the formula, find the central angle of the circle with the sector area is 180m² and the radius is 9m.

[tex]\begin{aligned}&\bold{\color{lightblue}Formula:}\\&\boxed{A_{sec} = \frac{ \theta}{360 \degree} \cdot \pi {r}^{2} }\end{aligned} [/tex]

  • [tex]\begin{aligned}{180 {m}^{2} = \frac{ \theta}{360 \degree} \cdot \pi(9m)^{2} }\end{aligned} [/tex]

  • [tex]\begin{aligned}{180 {m}^{2} = \frac{ \theta}{360 \degree} \cdot \pi(81 {m}^{2} ) }\end{aligned} [/tex]

  • [tex]\begin{aligned}{180 {m}^{2}(360) = \frac{ \theta}{ \cancel{360 \degree}} \cdot \pi(81 {m}^{2} ) \cancel{(360)} }\end{aligned} [/tex]

  • [tex]64800 {m}^{2} = \theta \cdot81{m}^{2} \pi[/tex]

  • [tex]64800 {m}^{2} =81{m}^{2} \pi \theta[/tex]

  • [tex] \frac{64800 \cancel{{m}^{2}}}{81 \cancel{{m}^{2}} \pi} = \frac{ \cancel{81{m}^{2} \pi }\theta}{ \cancel{81{m}^{2} \pi}} \\ [/tex]

  • [tex]800\pi = \theta [/tex]

[tex]\therefore[/tex] The central angle of the circle is 800π degrees.

[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]

#CarryOnLearning