Sumali sa IDNStudy.com at simulang makuha ang maaasahang mga sagot. Ang aming komunidad ay handang magbigay ng malalim at praktikal na mga solusyon sa lahat ng iyong mga katanungan.
Sagot :
Without plotting the points on the graph, you can determine which opposite vertices have to be connected to form the diagonals of the rectangle.
Points on opposite quadrants, when connected form the diagonals of the rectangle.
Its diagonals are congruent.
Quadrant I (+,+) and Quadrant III (-,-) are opposites.
Quadrant II (-,+) and Quadrant IV (+,-) are opposites.
Points/Vertices (10, 6) and (-2, -3) are opposites.
Points/Vertices (-2, 6) and ( 10, -3) are opposites.
Solve for the length of a diagonal of the rectangle by using the distance formula:
DISTANCE = [tex] \sqrt{(x _{2} - x_{1}) ^{2}+(y _{2} -y _{1} ) ^{2} } [/tex]
D = [tex] \sqrt{(-2-10) ^{2}+(-3-6) ^{2} } [/tex]
[tex]D = \sqrt{(-12) ^{2} +(-9) ^{2} } [/tex]
[tex]D = \sqrt{144 + 81} [/tex]
[tex]D = 15 units[/tex] [tex]D= \sqrt{225} [/tex]
The length of a diagonal is 15 units.
Points on opposite quadrants, when connected form the diagonals of the rectangle.
Its diagonals are congruent.
Quadrant I (+,+) and Quadrant III (-,-) are opposites.
Quadrant II (-,+) and Quadrant IV (+,-) are opposites.
Points/Vertices (10, 6) and (-2, -3) are opposites.
Points/Vertices (-2, 6) and ( 10, -3) are opposites.
Solve for the length of a diagonal of the rectangle by using the distance formula:
DISTANCE = [tex] \sqrt{(x _{2} - x_{1}) ^{2}+(y _{2} -y _{1} ) ^{2} } [/tex]
D = [tex] \sqrt{(-2-10) ^{2}+(-3-6) ^{2} } [/tex]
[tex]D = \sqrt{(-12) ^{2} +(-9) ^{2} } [/tex]
[tex]D = \sqrt{144 + 81} [/tex]
[tex]D = 15 units[/tex] [tex]D= \sqrt{225} [/tex]
The length of a diagonal is 15 units.
Ang iyong presensya ay mahalaga sa amin. Magpatuloy sa pagtatanong at pagbahagi ng iyong nalalaman. Sama-sama tayong magtutulungan upang makamit ang mas mataas na antas ng karunungan. Bumalik ka sa IDNStudy.com para sa maasahang mga sagot sa iyong mga katanungan. Salamat sa iyong tiwala.