Makakuha ng mga sagot mula sa komunidad at mga eksperto sa IDNStudy.com. Magtanong at makatanggap ng eksaktong sagot mula sa aming mga bihasang miyembro ng komunidad.
Sagot :
DIRECTIONS:
Find the sum of the following arithmetic sequence. Show your complete solution.
- Even integers between 1 and 101.
- Odd integers between 0 and 100.
- Multiples of 10 from 10 to 200.
ANSWERS:
- The sum is 2550.
- The sum of 2500.
- The sum is 2100.
SOLUTION:
••••••••••••••••••••••••••••••••••••••••••••••••••
For Number 1,
» List the even integers between 1 and 101.
[tex] \boxed {\begin{array}{c} \small\underline\textsf{Even numbers from 1 to 101:} \\\\ \textsf{ 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, } \\\textsf {22, 24, 26, 28, 30, 32, 34, 36, 38, 40, } \\\textsf{42, 44, 46, 48, 50, 52, 54, 56, 58, 60, } \\ \textsf{ 62, 64, 66, 68, 70, 72, 74, 76, 78, 80,} \\\textsf{ 82, 84, 86, 88, 90, 92, 94, 96, 98, and 100. } \\\end{array}} [/tex]
» The sequence formed is:
[tex] \qquad \begin{array}{|c|} \large\boxed{\textsf{ 2, 4, 6, 8, 10, ..., 100 }} \\\\ \underline\textsf{Where:} \\\\ \small\textsf{The first term} \: {\sf{a_1 \: = \: 2 } } \\ \small\textsf{The number of terms} \: {\sf{n \: = \: 50 }} \\ \small\textsf{The common difference} \: {\sf{d \: = \: 2 }} \end{array} [/tex]
» Solve for the sum of the terms.
- [tex] \sf{S_n =\frac{n}{2} [2a_1 + (n-1)d] } [/tex]
- [tex] \sf{S_{50} =\frac{50}{2} [2(2) + (50-1)2] } [/tex]
- [tex] \sf{S_{50} = 25 [4 + (49)2] } [/tex]
- [tex] \sf{S_{50} = 25 (4 + 98) } [/tex]
- [tex] \sf{S_{50} = 25 (102) } [/tex]
- [tex] \large \therefore {\green{\sf{S_{50} = 2550 }}} [/tex]
Thus, the sum of all even integers between 1 and 101 is 2550.
••••••••••••••••••••••••••••••••••••••••••••••••••
For Number 2,
» List the odd integers between 1 and 100.
[tex] \boxed {\begin{array}{c} \small\underline\textsf{Odd numbers from 1 to 100:} \\\\ \textsf{ 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, } \\\textsf {21, 23, 25, 27, 29, 31, 33, 35, 37, 39, } \\\textsf{41, 43, 45, 47, 49, 51, 53, 55, 57, 59, } \\ \textsf{ 61, 63, 65, 67, 69, 71, 73, 75, 77, 79,} \\\textsf{ 81, 83, 85, 87, 89, 91, 93, 95, 97, and 99. } \\\end{array}} [/tex]
» The sequence formed is:
[tex] \qquad \begin{array}{|c|} \large\boxed{\textsf{ 1, 3, 5, 7, 9, ..., 99 }} \\\\ \underline\textsf{Where:} \\\\ \small\textsf{The first term} \: {\sf{a_1 \: = \: 1 } } \\ \small\textsf{The number of terms} \: {\sf{n \: = \: 50 }} \\ \small\textsf{The common difference} \: {\sf{d \: = \: 2 }} \end{array} [/tex]
» Solve for the sum of the terms.
- [tex] \sf{S_n =\frac{n}{2} [2a_1 + (n-1)d] } [/tex]
- [tex] \sf{S_{50} =\frac{50}{2} [2(1) + (50-1)2] } [/tex]
- [tex] \sf{S_{50} = 25 [2 + (49)2] } [/tex]
- [tex] \sf{S_{50} = 25 (2 + 98) } [/tex]
- [tex] \sf{S_{50} = 25 (100) } [/tex]
- [tex] \large \therefore {\green{\sf{S_{50} = 2500 }}} [/tex]
Thus, the sum of all odd integers between 1 and 100 is 2500.
••••••••••••••••••••••••••••••••••••••••••••••••••
For Number 3,
» List the multiples of 10 from 10 to 200.
[tex] \qquad \boxed {\begin{array}{c} \small\underline\textsf{Multiples of 10 from 10 to 200. } \\\\ \textsf{ 10, 20, 30, 40, 50 } \\\textsf { 60, 70, 80, 90, 100 } \\\textsf{ 110, 120, 130, 140, 150, } \\ \textsf{ 160, 170, 180, 190, and 200} \\\end{array}} [/tex]
» The sequence formed is:
[tex] \qquad \begin{array}{|c|} \large\boxed{\textsf{ 10, 20, 30, 40, 50, ..., 200 }} \\\\ \underline\textsf{Where:} \\\\ \small\textsf{The first term} \: {\sf{a_1 \: = \: 10 } } \\ \small\textsf{The number of terms} \: {\sf{n \: = \: 20 }} \\ \small\textsf{The common difference} \: {\sf{d \: = \: 10 }} \end{array} [/tex]
» Solve for the sum of the terms.
- [tex] \sf{S_n =\frac{n}{2} [2a_1 + (n-1)d] } [/tex]
- [tex] \sf{S_{20} =\frac{20}{2} [2(10) + (20-1)10] } [/tex]
- [tex] \sf{S_{20} = 10 [20 + (19)10] } [/tex]
- [tex] \sf{S_{20} = 10 (20 + 190) } [/tex]
- [tex] \sf{S_{20} = 10 (210) } [/tex]
- [tex] \large \therefore {\green{\sf{S_{20} = 2100 }}} [/tex]
Thus, the sum of all multiples of 10 from 10 to 200 is 2100.
••••••••••••••••••••••••••••••••••••••••••••••••••
#BrainlyChallenge2022
Pinahahalagahan namin ang bawat ambag mo. Huwag kalimutang bumalik at magtanong ng mga bagong bagay. Ang iyong kaalaman ay napakahalaga sa ating komunidad. Ang IDNStudy.com ay nangako na sasagutin ang lahat ng iyong mga tanong. Salamat at bisitahin kami palagi.