Makahanap ng mabilis at maaasahang mga solusyon sa iyong mga problema sa IDNStudy.com. Magtanong ng anumang bagay at makatanggap ng kumpleto at eksaktong sagot mula sa aming komunidad ng mga propesyonal.

ACTIVITY CARD 1: Find the sum of the following arithmetic sequence. Show your complete solution.
1. Even integers between 1 and 101.
2, 4, 6, 8, 10, …, 100
2. Odd integers between 0 and 100.
1, 3, 5, 7, 9, …, 99
3. Multiples of 10 from 10 to 200.
10, 20, 30, 40, …, 200​


Sagot :

DIRECTIONS:

Find the sum of the following arithmetic sequence. Show your complete solution.

  1. Even integers between 1 and 101.
  2. Odd integers between 0 and 100.
  3. Multiples of 10 from 10 to 200.

ANSWERS:

  1. The sum is 2550.
  2. The sum of 2500.
  3. The sum is 2100.

SOLUTION:

••••••••••••••••••••••••••••••••••••••••••••••••••

For Number 1,

» List the even integers between 1 and 101.

[tex] \boxed {\begin{array}{c} \small\underline\textsf{Even numbers from 1 to 101:} \\\\ \textsf{ 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, } \\\textsf {22, 24, 26, 28, 30, 32, 34, 36, 38, 40, } \\\textsf{42, 44, 46, 48, 50, 52, 54, 56, 58, 60, } \\ \textsf{ 62, 64, 66, 68, 70, 72, 74, 76, 78, 80,} \\\textsf{ 82, 84, 86, 88, 90, 92, 94, 96, 98, and 100. } \\\end{array}} [/tex]

» The sequence formed is:

[tex] \qquad \begin{array}{|c|} \large\boxed{\textsf{ 2, 4, 6, 8, 10, ..., 100 }} \\\\ \underline\textsf{Where:} \\\\ \small\textsf{The first term} \: {\sf{a_1 \: = \: 2 } } \\ \small\textsf{The number of terms} \: {\sf{n \: = \: 50 }} \\ \small\textsf{The common difference} \: {\sf{d \: = \: 2 }} \end{array} [/tex]

» Solve for the sum of the terms.

  • [tex] \sf{S_n =\frac{n}{2} [2a_1 + (n-1)d] } [/tex]

  • [tex] \sf{S_{50} =\frac{50}{2} [2(2) + (50-1)2] } [/tex]

  • [tex] \sf{S_{50} = 25 [4 + (49)2] } [/tex]

  • [tex] \sf{S_{50} = 25 (4 + 98) } [/tex]

  • [tex] \sf{S_{50} = 25 (102) } [/tex]

  • [tex] \large \therefore {\green{\sf{S_{50} = 2550 }}} [/tex]

Thus, the sum of all even integers between 1 and 101 is 2550.

••••••••••••••••••••••••••••••••••••••••••••••••••

For Number 2,

» List the odd integers between 1 and 100.

[tex] \boxed {\begin{array}{c} \small\underline\textsf{Odd numbers from 1 to 100:} \\\\ \textsf{ 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, } \\\textsf {21, 23, 25, 27, 29, 31, 33, 35, 37, 39, } \\\textsf{41, 43, 45, 47, 49, 51, 53, 55, 57, 59, } \\ \textsf{ 61, 63, 65, 67, 69, 71, 73, 75, 77, 79,} \\\textsf{ 81, 83, 85, 87, 89, 91, 93, 95, 97, and 99. } \\\end{array}} [/tex]

» The sequence formed is:

[tex] \qquad \begin{array}{|c|} \large\boxed{\textsf{ 1, 3, 5, 7, 9, ..., 99 }} \\\\ \underline\textsf{Where:} \\\\ \small\textsf{The first term} \: {\sf{a_1 \: = \: 1 } } \\ \small\textsf{The number of terms} \: {\sf{n \: = \: 50 }} \\ \small\textsf{The common difference} \: {\sf{d \: = \: 2 }} \end{array} [/tex]

» Solve for the sum of the terms.

  • [tex] \sf{S_n =\frac{n}{2} [2a_1 + (n-1)d] } [/tex]

  • [tex] \sf{S_{50} =\frac{50}{2} [2(1) + (50-1)2] } [/tex]

  • [tex] \sf{S_{50} = 25 [2 + (49)2] } [/tex]

  • [tex] \sf{S_{50} = 25 (2 + 98) } [/tex]

  • [tex] \sf{S_{50} = 25 (100) } [/tex]

  • [tex] \large \therefore {\green{\sf{S_{50} = 2500 }}} [/tex]

Thus, the sum of all odd integers between 1 and 100 is 2500.

••••••••••••••••••••••••••••••••••••••••••••••••••

For Number 3,

» List the multiples of 10 from 10 to 200.

[tex] \qquad \boxed {\begin{array}{c} \small\underline\textsf{Multiples of 10 from 10 to 200. } \\\\ \textsf{ 10, 20, 30, 40, 50 } \\\textsf { 60, 70, 80, 90, 100 } \\\textsf{ 110, 120, 130, 140, 150, } \\ \textsf{ 160, 170, 180, 190, and 200} \\\end{array}} [/tex]

» The sequence formed is:

[tex] \qquad \begin{array}{|c|} \large\boxed{\textsf{ 10, 20, 30, 40, 50, ..., 200 }} \\\\ \underline\textsf{Where:} \\\\ \small\textsf{The first term} \: {\sf{a_1 \: = \: 10 } } \\ \small\textsf{The number of terms} \: {\sf{n \: = \: 20 }} \\ \small\textsf{The common difference} \: {\sf{d \: = \: 10 }} \end{array} [/tex]

» Solve for the sum of the terms.

  • [tex] \sf{S_n =\frac{n}{2} [2a_1 + (n-1)d] } [/tex]

  • [tex] \sf{S_{20} =\frac{20}{2} [2(10) + (20-1)10] } [/tex]

  • [tex] \sf{S_{20} = 10 [20 + (19)10] } [/tex]

  • [tex] \sf{S_{20} = 10 (20 + 190) } [/tex]

  • [tex] \sf{S_{20} = 10 (210) } [/tex]

  • [tex] \large \therefore {\green{\sf{S_{20} = 2100 }}} [/tex]

Thus, the sum of all multiples of 10 from 10 to 200 is 2100.

••••••••••••••••••••••••••••••••••••••••••••••••••

#BrainlyChallenge2022

Ang iyong aktibong pakikilahok ay mahalaga sa amin. Magpatuloy sa pagtatanong at pagbahagi ng iyong nalalaman. Sama-sama tayong lumikha ng isang mas matibay na samahan. Para sa mabilis at eksaktong mga solusyon, isipin ang IDNStudy.com. Salamat sa iyong pagbisita at sa muling pagkikita.