IDNStudy.com, ang perpektong platform para magtanong at makakuha ng maaasahang mga sagot. Hanapin ang impormasyon na kailangan mo nang mabilis at madali sa pamamagitan ng aming komprehensibo at eksaktong platform ng tanong at sagot.
Sagot :
DIRECTIONS:
Find the sum of the following arithmetic sequence. Show your complete solution.
- Even integers between 1 and 101.
- Odd integers between 0 and 100.
- Multiples of 10 from 10 to 200.
ANSWERS:
- The sum is 2550.
- The sum of 2500.
- The sum is 2100.
SOLUTION:
••••••••••••••••••••••••••••••••••••••••••••••••••
For Number 1,
» List the even integers between 1 and 101.
[tex] \boxed {\begin{array}{c} \small\underline\textsf{Even numbers from 1 to 101:} \\\\ \textsf{ 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, } \\\textsf {22, 24, 26, 28, 30, 32, 34, 36, 38, 40, } \\\textsf{42, 44, 46, 48, 50, 52, 54, 56, 58, 60, } \\ \textsf{ 62, 64, 66, 68, 70, 72, 74, 76, 78, 80,} \\\textsf{ 82, 84, 86, 88, 90, 92, 94, 96, 98, and 100. } \\\end{array}} [/tex]
» The sequence formed is:
[tex] \qquad \begin{array}{|c|} \large\boxed{\textsf{ 2, 4, 6, 8, 10, ..., 100 }} \\\\ \underline\textsf{Where:} \\\\ \small\textsf{The first term} \: {\sf{a_1 \: = \: 2 } } \\ \small\textsf{The number of terms} \: {\sf{n \: = \: 50 }} \\ \small\textsf{The common difference} \: {\sf{d \: = \: 2 }} \end{array} [/tex]
» Solve for the sum of the terms.
- [tex] \sf{S_n =\frac{n}{2} [2a_1 + (n-1)d] } [/tex]
- [tex] \sf{S_{50} =\frac{50}{2} [2(2) + (50-1)2] } [/tex]
- [tex] \sf{S_{50} = 25 [4 + (49)2] } [/tex]
- [tex] \sf{S_{50} = 25 (4 + 98) } [/tex]
- [tex] \sf{S_{50} = 25 (102) } [/tex]
- [tex] \large \therefore {\green{\sf{S_{50} = 2550 }}} [/tex]
Thus, the sum of all even integers between 1 and 101 is 2550.
••••••••••••••••••••••••••••••••••••••••••••••••••
For Number 2,
» List the odd integers between 1 and 100.
[tex] \boxed {\begin{array}{c} \small\underline\textsf{Odd numbers from 1 to 100:} \\\\ \textsf{ 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, } \\\textsf {21, 23, 25, 27, 29, 31, 33, 35, 37, 39, } \\\textsf{41, 43, 45, 47, 49, 51, 53, 55, 57, 59, } \\ \textsf{ 61, 63, 65, 67, 69, 71, 73, 75, 77, 79,} \\\textsf{ 81, 83, 85, 87, 89, 91, 93, 95, 97, and 99. } \\\end{array}} [/tex]
» The sequence formed is:
[tex] \qquad \begin{array}{|c|} \large\boxed{\textsf{ 1, 3, 5, 7, 9, ..., 99 }} \\\\ \underline\textsf{Where:} \\\\ \small\textsf{The first term} \: {\sf{a_1 \: = \: 1 } } \\ \small\textsf{The number of terms} \: {\sf{n \: = \: 50 }} \\ \small\textsf{The common difference} \: {\sf{d \: = \: 2 }} \end{array} [/tex]
» Solve for the sum of the terms.
- [tex] \sf{S_n =\frac{n}{2} [2a_1 + (n-1)d] } [/tex]
- [tex] \sf{S_{50} =\frac{50}{2} [2(1) + (50-1)2] } [/tex]
- [tex] \sf{S_{50} = 25 [2 + (49)2] } [/tex]
- [tex] \sf{S_{50} = 25 (2 + 98) } [/tex]
- [tex] \sf{S_{50} = 25 (100) } [/tex]
- [tex] \large \therefore {\green{\sf{S_{50} = 2500 }}} [/tex]
Thus, the sum of all odd integers between 1 and 100 is 2500.
••••••••••••••••••••••••••••••••••••••••••••••••••
For Number 3,
» List the multiples of 10 from 10 to 200.
[tex] \qquad \boxed {\begin{array}{c} \small\underline\textsf{Multiples of 10 from 10 to 200. } \\\\ \textsf{ 10, 20, 30, 40, 50 } \\\textsf { 60, 70, 80, 90, 100 } \\\textsf{ 110, 120, 130, 140, 150, } \\ \textsf{ 160, 170, 180, 190, and 200} \\\end{array}} [/tex]
» The sequence formed is:
[tex] \qquad \begin{array}{|c|} \large\boxed{\textsf{ 10, 20, 30, 40, 50, ..., 200 }} \\\\ \underline\textsf{Where:} \\\\ \small\textsf{The first term} \: {\sf{a_1 \: = \: 10 } } \\ \small\textsf{The number of terms} \: {\sf{n \: = \: 20 }} \\ \small\textsf{The common difference} \: {\sf{d \: = \: 10 }} \end{array} [/tex]
» Solve for the sum of the terms.
- [tex] \sf{S_n =\frac{n}{2} [2a_1 + (n-1)d] } [/tex]
- [tex] \sf{S_{20} =\frac{20}{2} [2(10) + (20-1)10] } [/tex]
- [tex] \sf{S_{20} = 10 [20 + (19)10] } [/tex]
- [tex] \sf{S_{20} = 10 (20 + 190) } [/tex]
- [tex] \sf{S_{20} = 10 (210) } [/tex]
- [tex] \large \therefore {\green{\sf{S_{20} = 2100 }}} [/tex]
Thus, the sum of all multiples of 10 from 10 to 200 is 2100.
••••••••••••••••••••••••••••••••••••••••••••••••••
#BrainlyChallenge2022
Natutuwa kami na ikaw ay bahagi ng aming komunidad. Magpatuloy sa pagtatanong at pagbibigay ng mga sagot. Sama-sama tayong lumikha ng isang komunidad ng karunungan. Gawin mong pangunahing mapagkukunan ang IDNStudy.com para sa maasahang mga sagot. Nandito kami para sa iyo.