IDNStudy.com, kung saan ang iyong mga tanong ay natutugunan ng mga eksaktong sagot. Magtanong ng anumang bagay at makatanggap ng agarang tugon mula sa aming dedikadong komunidad ng mga eksperto.

given the figure below solve for the value x​

Given The Figure Below Solve For The Value X class=

Sagot :

✒️CIRCLE

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{DIRECTIONS}:} [/tex]

  • Given the figure below, solve for the value of x.

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{ANSWERS}:} [/tex]

[tex] \qquad \Large \rm{1) \; 15 \: units\:} [/tex]

[tex] \qquad \Large \rm{2) \; 20 \: units\:} [/tex]

[tex] \qquad \Large \rm{3) \; 52\degree\:} [/tex]

[tex] \qquad \Large \rm{4) \; 5 \: units\:} [/tex]

[tex] \qquad \Large \rm{5) \; 124 \degree\:} [/tex]

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{SOLUTIONS}:} [/tex]

Number 1:

» Radius BA is perpendicular to tangent segment AC. Thus, ∆BAC is a right triangle. Find x using the Pythagorean theorem.

  • [tex] (BC)^2 = (BA)^2 + (AC)^2 [/tex]

  • [tex] (x)^2 = (9)^2 + (12)^2 [/tex]

  • [tex] x^2 = 81 + 144 [/tex]

  • [tex] x^2 = 225 [/tex]

  • [tex] \sqrt{x^2} = \sqrt{225} [/tex]

  • [tex] x = 15 [/tex]

[tex] \therefore [/tex] The length of segment x is 15 units

[tex] \: [/tex]

Number 2:

» Radius CQ is perpendicular to tangent segment QM. Thus, ∆CQM is a right triangle. Find x using the Pythagorean Theorem.

  • [tex] (QM)^2 + (CQ)^2 = (MC)^2 [/tex]

  • [tex] (x)^2 + (15)^2 = (25)^2 [/tex]

  • [tex] x^2 + 225 = 625 [/tex]

  • [tex] x^2 = 625 - 225 [/tex]

  • [tex] x^2 = 400 [/tex]

  • [tex] \sqrt{x^2} = \sqrt{400} [/tex]

  • [tex] x = 20 [/tex]

[tex] \therefore [/tex] The length of segment x is 20 units

[tex] \: [/tex]

Number 3:

» Angles T and S are supplementary. Thus, angles R and O are also supplementary.

  • [tex] m\angle R + m\angle O = 180\degree [/tex]

  • [tex] x + 128\degree = 180\degree [/tex]

  • [tex] x = 180\degree - 128\degree [/tex]

  • [tex] x = 52\degree [/tex]

[tex] \therefore [/tex] The measure of angle x is 52°

[tex] \: [/tex]

Number 4:

» Tangent segments AB and AD both drawn on circle C. Thus, their lengths are equal.

  • [tex] AB = AD [/tex]

  • [tex] 2x^2 + 4 = 54 [/tex]

  • [tex] 2x^2 = 54 - 4 [/tex]

  • [tex] 2x^2 = 50 [/tex]

  • [tex] \frac{\,2x^2\,}{2} = \frac{\,50\,}{2} \\ [/tex]

  • [tex] x^2 = 25 [/tex]

  • [tex] \sqrt{x^2} = \sqrt{25} [/tex]

  • [tex] x = 5 [/tex]

[tex] \therefore [/tex] The length of segment x is 5 units

[tex] \: [/tex]

» Angles Q and S are supplementary, Thus, angles R and A are also supplementary.

  • [tex] m\angle A + m\angle R = 180\degree [/tex]

  • [tex] m\angle A + 56\degree = 180\degree [/tex]

  • [tex] m\angle A = 180\degree - 56\degree [/tex]

  • [tex] m\angle A = 124\degree [/tex]

» The measure of a central angle subtended by the two radii is equal to its intercepted arc.

  • [tex] m\overset{\frown}{QS} = m\angle A [/tex]

  • [tex] x = 124\degree [/tex]

[tex] \therefore [/tex] The measure of the arc x is 124°

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

(ノ^_^)ノ