Makakuha ng eksaktong mga sagot sa iyong mga tanong sa IDNStudy.com. Ang aming platform ay nagbibigay ng mga maaasahang sagot upang matulungan kang gumawa ng matalinong desisyon nang mabilis at madali.

given the figure below solve for the value x​

Given The Figure Below Solve For The Value X class=

Sagot :

✒️CIRCLE

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{DIRECTIONS}:} [/tex]

  • Given the figure below, solve for the value of x.

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{ANSWERS}:} [/tex]

[tex] \qquad \Large \rm{1) \; 15 \: units\:} [/tex]

[tex] \qquad \Large \rm{2) \; 20 \: units\:} [/tex]

[tex] \qquad \Large \rm{3) \; 52\degree\:} [/tex]

[tex] \qquad \Large \rm{4) \; 5 \: units\:} [/tex]

[tex] \qquad \Large \rm{5) \; 124 \degree\:} [/tex]

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{SOLUTIONS}:} [/tex]

Number 1:

» Radius BA is perpendicular to tangent segment AC. Thus, ∆BAC is a right triangle. Find x using the Pythagorean theorem.

  • [tex] (BC)^2 = (BA)^2 + (AC)^2 [/tex]

  • [tex] (x)^2 = (9)^2 + (12)^2 [/tex]

  • [tex] x^2 = 81 + 144 [/tex]

  • [tex] x^2 = 225 [/tex]

  • [tex] \sqrt{x^2} = \sqrt{225} [/tex]

  • [tex] x = 15 [/tex]

[tex] \therefore [/tex] The length of segment x is 15 units

[tex] \: [/tex]

Number 2:

» Radius CQ is perpendicular to tangent segment QM. Thus, ∆CQM is a right triangle. Find x using the Pythagorean Theorem.

  • [tex] (QM)^2 + (CQ)^2 = (MC)^2 [/tex]

  • [tex] (x)^2 + (15)^2 = (25)^2 [/tex]

  • [tex] x^2 + 225 = 625 [/tex]

  • [tex] x^2 = 625 - 225 [/tex]

  • [tex] x^2 = 400 [/tex]

  • [tex] \sqrt{x^2} = \sqrt{400} [/tex]

  • [tex] x = 20 [/tex]

[tex] \therefore [/tex] The length of segment x is 20 units

[tex] \: [/tex]

Number 3:

» Angles T and S are supplementary. Thus, angles R and O are also supplementary.

  • [tex] m\angle R + m\angle O = 180\degree [/tex]

  • [tex] x + 128\degree = 180\degree [/tex]

  • [tex] x = 180\degree - 128\degree [/tex]

  • [tex] x = 52\degree [/tex]

[tex] \therefore [/tex] The measure of angle x is 52°

[tex] \: [/tex]

Number 4:

» Tangent segments AB and AD both drawn on circle C. Thus, their lengths are equal.

  • [tex] AB = AD [/tex]

  • [tex] 2x^2 + 4 = 54 [/tex]

  • [tex] 2x^2 = 54 - 4 [/tex]

  • [tex] 2x^2 = 50 [/tex]

  • [tex] \frac{\,2x^2\,}{2} = \frac{\,50\,}{2} \\ [/tex]

  • [tex] x^2 = 25 [/tex]

  • [tex] \sqrt{x^2} = \sqrt{25} [/tex]

  • [tex] x = 5 [/tex]

[tex] \therefore [/tex] The length of segment x is 5 units

[tex] \: [/tex]

» Angles Q and S are supplementary, Thus, angles R and A are also supplementary.

  • [tex] m\angle A + m\angle R = 180\degree [/tex]

  • [tex] m\angle A + 56\degree = 180\degree [/tex]

  • [tex] m\angle A = 180\degree - 56\degree [/tex]

  • [tex] m\angle A = 124\degree [/tex]

» The measure of a central angle subtended by the two radii is equal to its intercepted arc.

  • [tex] m\overset{\frown}{QS} = m\angle A [/tex]

  • [tex] x = 124\degree [/tex]

[tex] \therefore [/tex] The measure of the arc x is 124°

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

(ノ^_^)ノ