IDNStudy.com, ang perpektong platform para magtanong at makakuha ng maaasahang mga sagot. Sumali sa aming platform ng tanong at sagot upang makatanggap ng mabilis at eksaktong tugon mula sa mga propesyonal sa iba't ibang larangan.

Find the factors of the following polynomials​

Find The Factors Of The Following Polynomials class=

Sagot :

Answer:

1.x2-13x-39

Step-by-step explanation:

yan lng po alam ko

Solution/s:

1.

[tex] \displaystyle x^3 + 13x^2 + 30x = ? [/tex]

[tex] \displaystyle \textsf{Factor out x:} [/tex]

[tex] \displaystyle = x(x^2 + 13x + 30) [/tex]

[tex] \displaystyle \textsf{Factor quadratic trinomial:} [/tex]

[tex] \displaystyle = \boxed{\green{ x(x+10)(x+3) }} [/tex]

[tex] \displaystyle \textsf{(Optional)Let us solve for x:} [/tex]

[tex] \displaystyle \textsf{Equate to 0:} [/tex]

[tex] \displaystyle = x=0,(x+10=0),(x+3=0) [/tex]

[tex] \displaystyle = x=0,(x=-10),(x=-3) [/tex]

[tex] \displaystyle = \boxed{ x=0, -10, -3} [/tex]

[tex] \displaystyle x^3 + 13x^2 + 30x = x(x+10)(x+3) [/tex]

2.

[tex] \displaystyle x^3 + 4x^2 + 5x + 2 = ? [/tex]

[tex] \displaystyle \textsf{Factor out x:} [/tex]

[tex] \displaystyle x^3 + 4x^2 + 5x + 2 [/tex]

[tex] \displaystyle \textsf{Let us find the possible roots:} [/tex]

[tex] \displaystyle \pm  2 \textsf{\ and\ } \pm 1 [/tex]

[tex] \displaystyle \textsf{Let us try: \ } \pm 1 [/tex]

[tex] \displaystyle 1^3 + 4(1)^2 + 5(1) + 2 = 0 \quad ? [/tex]

[tex] \displaystyle 1 + 4 + 5 + 2 = 0 \quad ? [/tex]

[tex]\displaystyle 12 \ne 0 \quad \times \[/tex]

[tex] \displaystyle (-1)^3 + 4(-1)^2 + 5(-1) + 2 = 0 \quad ? [/tex]

[tex] \displaystyle -1 + 4 + -5 + 2 = 0 \quad ? [/tex]

[tex]\displaystyle 0 = 0 \quad \checkmark \[/tex]

[tex]\displaystyle \textsf{-1 is a solution, therefore x+1 is a factor:}[/tex]

[tex] \displaystyle = (x+1)(x^2+3x+2) [/tex]

[tex] \displaystyle \textsf{Now let us factor the quadratic trinomial:} [/tex]

[tex] \displaystyle = \boxed{\green{ (x+1)(x+1)(x+2) }} [/tex]

[tex] \displaystyle x^3 + 4x^2 + 5x + 2 = (x+1)(x+1)(x+2) [/tex]

Maraming salamat sa iyong aktibong pakikilahok. Magpatuloy sa pagtatanong at pagbabahagi ng iyong mga ideya. Ang iyong kaalaman ay mahalaga sa ating komunidad. Sa IDNStudy.com, kami ay nangako na magbigay ng pinakamahusay na mga sagot. Salamat at sa muling pagkikita.