Suriin ang IDNStudy.com para sa mabilis at maaasahang mga solusyon. Tuklasin ang mga kumpletong sagot sa iyong mga tanong mula sa aming komunidad ng mga eksperto.

The sum of two numbers is 41. The first number is 7 more than the second. What is the first number?

Sagot :

✏️NUMBERS

===============================

Problem: The sum of two numbers is 41. The first number is 7 more than the second. What is the first number?

Solution: Represent x and y as the first and second number respectively. Make equations of the given statement.

  • [tex] \begin{cases}x = y + 7& \green{(eq. \: 1)} \\ x + y = 41 & \green{(eq. \: 2)}\end{cases}[/tex]

- Substitute x from the first equation to the second equation in terms of y.

  • [tex] \begin{cases}x = y + 7 \\ (y + 7) + y = 41\end{cases}[/tex]

  • [tex] \begin{cases}x = y + 7 \\ y + 7 + y = 41\end{cases}[/tex]

  • [tex] \begin{cases}x = y + 7 \\ 2y + 7 = 41\end{cases}[/tex]

  • [tex] \begin{cases}x = y + 7 \\ 2y = 41 - 7\end{cases}[/tex]

  • [tex] \begin{cases}x = y + 7 \\ 2y = 34\end{cases}[/tex]

  • [tex] \begin{cases}x = y + 7 \\ \begin{gathered} \frac{ \cancel2y}{ \cancel2} = \frac{34}{2} \end{gathered}\end{cases}[/tex]

  • [tex] \begin{cases}x = y + 7 \\ y = 17\end{cases}[/tex]

- Substitute y to the first equation to find the x also known as the first number.

  • [tex] \begin{cases}x = 17 + 7 \\ y = 17\end{cases}[/tex]

  • [tex] \begin{cases}x = 24 \\ y = 17\end{cases}[/tex]

- Therefore, the first number is:

  • [tex] \large \rm First \: Number = \boxed{ \rm \green{ \: 24 \: }}[/tex]

===============================

#CarryOnLearning

#BetterWithBrainly

✒️NUMBERS

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{PROBLEM}:} [/tex]

  • The sum of two numbers is 41. The first number is 7 more than the second. What is the first number?

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{ANSWER}:} [/tex]

[tex] \qquad \Large \rm{The \: first \: no. \: is \: 24} [/tex]

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{SOLUTION}:} [/tex]

» Let x and y be the first and the second number respectively. Create two equations by the given statements.

  • [tex] \begin{cases} x + y = 41 \\ x = y + 7 \end{cases} \quad \begin{align} \tt{(eq. \: 1)} \\ \tt{(eq. \: 2)} \end{align} [/tex]

» Find y in the first equation then substitute it to the second equation in terms of x and to find the first number.

  • [tex] \begin{cases} y = 41 - x \\ x = y + 7 \end{cases} [/tex]

  • [tex] \begin{cases} y = 41 - x \\ x = 41 - x + 7 \end{cases} [/tex]

  • [tex] \begin{cases} y = 41 - x \\ x + x = 41 + 7 \end{cases} [/tex]

  • [tex] \begin{cases} y = 41 - x \\ 2x = 48 \end{cases} [/tex]

  • [tex] \begin{cases} y = 41 - x \\ 2x/2 = 48/2 \end{cases} [/tex]

  • [tex] \begin{cases} y = 41 - x \\ x = 24 \end{cases} [/tex]

[tex] \therefore [/tex] The first number is 24.

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

(ノ^_^)ノ