IDNStudy.com, ang perpektong platform para sa mabilis at eksaktong mga sagot. Hanapin ang impormasyon na kailangan mo nang mabilis at madali sa pamamagitan ng aming komprehensibo at eksaktong platform ng tanong at sagot.

The sum of two numbers is 41. The first number is 7 more than the second. What is the first number?

Sagot :

✏️NUMBERS

===============================

Problem: The sum of two numbers is 41. The first number is 7 more than the second. What is the first number?

Solution: Represent x and y as the first and second number respectively. Make equations of the given statement.

  • [tex] \begin{cases}x = y + 7& \green{(eq. \: 1)} \\ x + y = 41 & \green{(eq. \: 2)}\end{cases}[/tex]

- Substitute x from the first equation to the second equation in terms of y.

  • [tex] \begin{cases}x = y + 7 \\ (y + 7) + y = 41\end{cases}[/tex]

  • [tex] \begin{cases}x = y + 7 \\ y + 7 + y = 41\end{cases}[/tex]

  • [tex] \begin{cases}x = y + 7 \\ 2y + 7 = 41\end{cases}[/tex]

  • [tex] \begin{cases}x = y + 7 \\ 2y = 41 - 7\end{cases}[/tex]

  • [tex] \begin{cases}x = y + 7 \\ 2y = 34\end{cases}[/tex]

  • [tex] \begin{cases}x = y + 7 \\ \begin{gathered} \frac{ \cancel2y}{ \cancel2} = \frac{34}{2} \end{gathered}\end{cases}[/tex]

  • [tex] \begin{cases}x = y + 7 \\ y = 17\end{cases}[/tex]

- Substitute y to the first equation to find the x also known as the first number.

  • [tex] \begin{cases}x = 17 + 7 \\ y = 17\end{cases}[/tex]

  • [tex] \begin{cases}x = 24 \\ y = 17\end{cases}[/tex]

- Therefore, the first number is:

  • [tex] \large \rm First \: Number = \boxed{ \rm \green{ \: 24 \: }}[/tex]

===============================

#CarryOnLearning

#BetterWithBrainly

✒️NUMBERS

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{PROBLEM}:} [/tex]

  • The sum of two numbers is 41. The first number is 7 more than the second. What is the first number?

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{ANSWER}:} [/tex]

[tex] \qquad \Large \rm{The \: first \: no. \: is \: 24} [/tex]

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{SOLUTION}:} [/tex]

» Let x and y be the first and the second number respectively. Create two equations by the given statements.

  • [tex] \begin{cases} x + y = 41 \\ x = y + 7 \end{cases} \quad \begin{align} \tt{(eq. \: 1)} \\ \tt{(eq. \: 2)} \end{align} [/tex]

» Find y in the first equation then substitute it to the second equation in terms of x and to find the first number.

  • [tex] \begin{cases} y = 41 - x \\ x = y + 7 \end{cases} [/tex]

  • [tex] \begin{cases} y = 41 - x \\ x = 41 - x + 7 \end{cases} [/tex]

  • [tex] \begin{cases} y = 41 - x \\ x + x = 41 + 7 \end{cases} [/tex]

  • [tex] \begin{cases} y = 41 - x \\ 2x = 48 \end{cases} [/tex]

  • [tex] \begin{cases} y = 41 - x \\ 2x/2 = 48/2 \end{cases} [/tex]

  • [tex] \begin{cases} y = 41 - x \\ x = 24 \end{cases} [/tex]

[tex] \therefore [/tex] The first number is 24.

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

(ノ^_^)ノ