Makakuha ng mga sagot sa iyong mga pinakamahahalagang tanong sa IDNStudy.com. Ang aming platform ng tanong at sagot ay idinisenyo upang magbigay ng mabilis at eksaktong sagot sa lahat ng iyong mga tanong.

If r varies directly as s and inversely as the square of u, and r=2 when s=18 and u=2. find out r when u=3 and s=27

Sagot :

✒️VARIATIONS

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{PROBLEM}:} [/tex]

  • If r varies directly as s and inversely as the square of u, and r=2 when s=18 and u=2. find out r when u=3 and s=27

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{ANSWER}:} [/tex]

[tex] \qquad \Large \:\: \rm{r = \frac{\,4\,}{3}} \\ [/tex]

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{SOLUTION}:} [/tex]

» Create the equation of a combined variation in which k is the constant.

  • [tex] r = \frac{\,ks\,}{u^2} \\ [/tex]

» Find the constant of the variation.

  • [tex] 2 = \frac{\,k(18)\,}{2^2} \\ [/tex]

  • [tex] 2 = \frac{\,k(18)\,}{4} \\ [/tex]

  • [tex] 2 = \frac{\,k(9)\,}{2} \\ [/tex]

  • [tex] 2\cdot\frac{\,2\,}{9} = \frac{\,k(9)\,}{2} \cdot \frac{\,2\,}{9} \\ [/tex]

  • [tex] \frac{\,4\,}{9} = k \\ [/tex]

» The constant is 4/9. Find r when u is 3 and s is 27.

  • [tex] r = \frac{\,\frac49s\,}{u^2} \\ [/tex]

  • [tex] r = \frac{\,\frac49(27)\,}{3^2} \\ [/tex]

  • [tex] r = \frac{\,\frac{108}9\,}{9} \\ [/tex]

  • [tex] r = \frac{\,12\,}{9} \\ [/tex]

  • [tex] r = \frac{\,4\,}{3} \\ [/tex]

[tex] \therefore [/tex] The value of r is 4/3

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

(ノ^_^)ノ

✒️[tex]\large{\mathcal{ANSWER}}[/tex]

[tex]======================[/tex]

If r varies directly as s and inversely as the square of u, and r=2 when s=18 and u=2. find out r when u=3 and s=27.

[tex] \: \boxed{r = \frac{4}{3}} [/tex]

[tex]------------------[/tex]

Computation / Solution;

[tex]set \: r = m \frac{s}{u {}^{2} } [/tex]

r = 2 when s = 18 , u = 12

[tex]2 = m = \frac{18}{ {2}^{2} } [/tex]

[tex]2 = m = \frac{18}{4} [/tex]

[tex]18m = 8[/tex]

[tex]m = \frac{4}{9} [/tex]

[tex]r = \frac{4s}{9 {u}^{2} } [/tex]

when u = 3, s = 27

[tex]r = \frac{4 \times 27}{9 \times {3}^{2} } [/tex]

[tex]r = \frac{4 \times 27}{9 \times 3 \times 3} [/tex]

[tex]r = \frac{4}{3} [/tex]

So the answer is [tex]r = \frac{4}{3} [/tex]