Magtanong at makakuha ng eksaktong mga sagot sa IDNStudy.com. Sumali sa aming interactive na platform ng tanong at sagot para sa mabilis at eksaktong tugon mula sa mga propesyonal sa iba't ibang larangan.

If r varies directly as s and inversely as the square of u, and r=2 when s=18 and u=2. find out r when u=3 and s=27

Sagot :

✒️VARIATIONS

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{PROBLEM}:} [/tex]

  • If r varies directly as s and inversely as the square of u, and r=2 when s=18 and u=2. find out r when u=3 and s=27

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{ANSWER}:} [/tex]

[tex] \qquad \Large \:\: \rm{r = \frac{\,4\,}{3}} \\ [/tex]

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{SOLUTION}:} [/tex]

» Create the equation of a combined variation in which k is the constant.

  • [tex] r = \frac{\,ks\,}{u^2} \\ [/tex]

» Find the constant of the variation.

  • [tex] 2 = \frac{\,k(18)\,}{2^2} \\ [/tex]

  • [tex] 2 = \frac{\,k(18)\,}{4} \\ [/tex]

  • [tex] 2 = \frac{\,k(9)\,}{2} \\ [/tex]

  • [tex] 2\cdot\frac{\,2\,}{9} = \frac{\,k(9)\,}{2} \cdot \frac{\,2\,}{9} \\ [/tex]

  • [tex] \frac{\,4\,}{9} = k \\ [/tex]

» The constant is 4/9. Find r when u is 3 and s is 27.

  • [tex] r = \frac{\,\frac49s\,}{u^2} \\ [/tex]

  • [tex] r = \frac{\,\frac49(27)\,}{3^2} \\ [/tex]

  • [tex] r = \frac{\,\frac{108}9\,}{9} \\ [/tex]

  • [tex] r = \frac{\,12\,}{9} \\ [/tex]

  • [tex] r = \frac{\,4\,}{3} \\ [/tex]

[tex] \therefore [/tex] The value of r is 4/3

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

(ノ^_^)ノ

✒️[tex]\large{\mathcal{ANSWER}}[/tex]

[tex]======================[/tex]

If r varies directly as s and inversely as the square of u, and r=2 when s=18 and u=2. find out r when u=3 and s=27.

[tex] \: \boxed{r = \frac{4}{3}} [/tex]

[tex]------------------[/tex]

Computation / Solution;

[tex]set \: r = m \frac{s}{u {}^{2} } [/tex]

r = 2 when s = 18 , u = 12

[tex]2 = m = \frac{18}{ {2}^{2} } [/tex]

[tex]2 = m = \frac{18}{4} [/tex]

[tex]18m = 8[/tex]

[tex]m = \frac{4}{9} [/tex]

[tex]r = \frac{4s}{9 {u}^{2} } [/tex]

when u = 3, s = 27

[tex]r = \frac{4 \times 27}{9 \times {3}^{2} } [/tex]

[tex]r = \frac{4 \times 27}{9 \times 3 \times 3} [/tex]

[tex]r = \frac{4}{3} [/tex]

So the answer is [tex]r = \frac{4}{3} [/tex]