Makahanap ng mga eksaktong solusyon sa iyong mga problema gamit ang IDNStudy.com. Makakuha ng impormasyon mula sa aming mga eksperto, na nagbibigay ng maaasahang sagot sa lahat ng iyong mga tanong.

If r varies directly as s and inversely as the square of u, and r=2 when s=18 and u=2. find out r when u=3 and s=27

Sagot :

✒️VARIATIONS

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{PROBLEM}:} [/tex]

  • If r varies directly as s and inversely as the square of u, and r=2 when s=18 and u=2. find out r when u=3 and s=27

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{ANSWER}:} [/tex]

[tex] \qquad \Large \:\: \rm{r = \frac{\,4\,}{3}} \\ [/tex]

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{SOLUTION}:} [/tex]

» Create the equation of a combined variation in which k is the constant.

  • [tex] r = \frac{\,ks\,}{u^2} \\ [/tex]

» Find the constant of the variation.

  • [tex] 2 = \frac{\,k(18)\,}{2^2} \\ [/tex]

  • [tex] 2 = \frac{\,k(18)\,}{4} \\ [/tex]

  • [tex] 2 = \frac{\,k(9)\,}{2} \\ [/tex]

  • [tex] 2\cdot\frac{\,2\,}{9} = \frac{\,k(9)\,}{2} \cdot \frac{\,2\,}{9} \\ [/tex]

  • [tex] \frac{\,4\,}{9} = k \\ [/tex]

» The constant is 4/9. Find r when u is 3 and s is 27.

  • [tex] r = \frac{\,\frac49s\,}{u^2} \\ [/tex]

  • [tex] r = \frac{\,\frac49(27)\,}{3^2} \\ [/tex]

  • [tex] r = \frac{\,\frac{108}9\,}{9} \\ [/tex]

  • [tex] r = \frac{\,12\,}{9} \\ [/tex]

  • [tex] r = \frac{\,4\,}{3} \\ [/tex]

[tex] \therefore [/tex] The value of r is 4/3

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

(ノ^_^)ノ

✒️[tex]\large{\mathcal{ANSWER}}[/tex]

[tex]======================[/tex]

If r varies directly as s and inversely as the square of u, and r=2 when s=18 and u=2. find out r when u=3 and s=27.

[tex] \: \boxed{r = \frac{4}{3}} [/tex]

[tex]------------------[/tex]

Computation / Solution;

[tex]set \: r = m \frac{s}{u {}^{2} } [/tex]

r = 2 when s = 18 , u = 12

[tex]2 = m = \frac{18}{ {2}^{2} } [/tex]

[tex]2 = m = \frac{18}{4} [/tex]

[tex]18m = 8[/tex]

[tex]m = \frac{4}{9} [/tex]

[tex]r = \frac{4s}{9 {u}^{2} } [/tex]

when u = 3, s = 27

[tex]r = \frac{4 \times 27}{9 \times {3}^{2} } [/tex]

[tex]r = \frac{4 \times 27}{9 \times 3 \times 3} [/tex]

[tex]r = \frac{4}{3} [/tex]

So the answer is [tex]r = \frac{4}{3} [/tex]