Makakuha ng mabilis at pangkomunidad na mga sagot sa IDNStudy.com. Magtanong ng anumang bagay at makatanggap ng mga maalam na sagot mula sa aming komunidad ng mga propesyonal.

•••••••••••••••••••••••••••••••••••
PA HELP PO TYTY!

NONSENSE REPORT! ;)
•••••••••••••••••••••••••••••••••••••​


PA HELP PO TYTYNONSENSE REPORT class=

Sagot :

✒️SEGMENTS

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{ANSWER}:} [/tex]

[tex] \qquad \Large \: \rm{\approx 66.27 \: sq. \: cm} [/tex]

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{SOLUTION}:} [/tex]

» Take one segment. Since there are three of them, each would have a 120° angle.

  • 3 identical Segments
  • Each subtended arcs measures 120°

» Find its area. But first, find the area of the sector that is bounded with the the two radii and an intercepted arc.

[tex] \begin{align} & \bold{Formula:} \\ & \quad \boxed{\rm A_{\,Sector} = \frac{\theta}{\,360\degree} \cdot \pi r^2} \end{align} [/tex]

  • [tex] A_{\,Sector} = \frac{120\degree}{\,360\degree} \cdot \pi(6)^2 \: cm^2 \\ [/tex]

  • [tex] A_{\,Sector} = \frac{\,1\,}{3} \cdot 36\pi \: cm^2 \\ [/tex]

  • [tex] A_{\,Sector} = \frac{\,36\pi\,}{3} \: cm^2 \\ [/tex]

  • [tex] A_{\,Sector} = 12\pi \: cm^2 [/tex]

» Let 3.14 be the approximate value of pi.

  • [tex] A_{\,Sector} \approx 12(3.14) \: cm^2 [/tex]

  • [tex] A_{\,Sector} \approx 37.68 \: cm^2 [/tex]

» Find the area of the triangle that is bounded with the two radii and a chord.

[tex] \begin{align} & \bold{Formula:} \\ & \quad \boxed{\rm A_{\,Triangle} = \frac{\,1\,}{2} \cdot r^2\sin\theta} \end{align} [/tex]

  • [tex] A_{\,Triangle} = \frac{\,1\,}{2} \cdot (6)^2 \sin(120\degree) \: cm^2 \\ [/tex]

  • [tex] A_{\,Triangle} = \frac{\,1\,}{2} \cdot 36 \sin(120\degree) \: cm^2 \\ [/tex]

  • [tex] A_{\,Triangle} \approx \frac{\,1\,}{2} \cdot 31.18 \: cm^2 \\ [/tex]

  • [tex] A_{\,Triangle} \approx 15.59\: cm^2 [/tex]

» Find the area of the segment that is bounded with a chord and an arc.

[tex] \begin{align} & \bold{Formula:} \\ & \quad \boxed{\rm A_{\,Segment} = A_{\,Sector} - A_{\,Triangle}} \end{align} [/tex]

  • [tex] A_{\,Segment} \approx 37.68 \, cm^2 - 15.59\,cm^2 [/tex]

  • [tex] A_{\,Segment} \approx 22.09 \, cm^2 [/tex]

» Multiply the approximate area by three to find the area of all the shaded regions.

  • [tex] 22.09(3) \: cm^2 \approx 66.27 \: cm^2 [/tex]

[tex] \therefore [/tex] The area of all the shaded regions are about 66.27 sq. centimeters

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

(ノ^_^)ノ