IDNStudy.com, kung saan nagtatagpo ang mga tanong at sagot. Ang aming komunidad ay handang magbigay ng malalim at praktikal na mga solusyon sa lahat ng iyong mga katanungan.

find the area of the shaded region given m∠SAT = 90° and the radius of circle A is 12cm. Show your complete solution.

need po talaga ngayon!​


Find The Area Of The Shaded Region Given MSAT 90 And The Radius Of Circle A Is 12cm Show Your Complete Solutionneed Po Talaga Ngayon class=

Sagot :

✏️SECTOR

===============================

Problem: Find the area of the shaded region given m∠SAT = 90° and the radius of circle A is 12cm. Show your complete solution.

Solution: Find the area of the product of the circle's area and the ratio of the central angle at 360 degrees.

[tex] \begin{aligned}& \bold{ \color{lightblue}Formula:} \\ & \boxed{A_{seg} = \frac{ \theta}{360 \degree} \cdot\pi {r}^{2} } \end{aligned}[/tex]

  • [tex] \begin{aligned}{A_{seg} = \frac{90 \degree}{360 \degree} \cdot\pi (12cm)^{2} } \end{aligned}[/tex]

  • [tex] \begin{aligned}{A_{seg} = \frac{1}{4} \cdot\pi (144cm^{2}) } \end{aligned}[/tex]

  • [tex] \begin{aligned}{A_{seg} = \frac{\pi (144cm^{2}) }{4} } \end{aligned}[/tex]

  • [tex] \begin{aligned}{A_{seg} = \pi (36cm^{2}) } \end{aligned}[/tex]

- Let 3.14 be the approximate value of pi.

  • [tex] \begin{aligned}{A_{seg} ≈ (3.14) (36cm^{2}) } \end{aligned}[/tex]

  • [tex] \begin{aligned}{A_{seg} ≈ 113.04cm^{2} } \end{aligned}[/tex]

- Therefore, the area of the sector is:

  • [tex] \large \rm Sector \: Area = \boxed{ \rm \green{ \: 113.04 \: sq. \: cm \: }}[/tex]

===============================

#CarryOnLearning

#LearnWithBrainly