IDNStudy.com, ang iyong mapagkakatiwalaang mapagkukunan para sa eksaktong at maaasahang mga sagot. Alamin ang mga detalyadong sagot mula sa mga bihasang miyembro ng aming komunidad na sumasaklaw sa iba't ibang paksa para sa lahat ng iyong pangangailangan.

What is the sum of the digits of the number of integers multiples of 3 between 1 and 200?​

Sagot :

✒️[tex]\large{\mathcal{ANSWER}}[/tex]

[tex]======================[/tex]

The sum of the digits of the number of whole numbers between 1 and 200 that are multiples of 3 is 12.

  • The multiples of 3 are: 3, 6, 9, 12, 15...

This sequence forms an arithmetic progression (AP) of ratio 3, and first term 3 and last term 198 (since we are considering a discrete interval).

[tex]------------------[/tex]

Thus, we have that the number of numbers multiples of 3 between 1 and 200 is 66.

[tex] a_{n} = a_{1} + (n - 1)r[/tex]

[tex]198 = 3 + (n - 1)3[/tex]

[tex] 3_{n} = 198[/tex]

[tex]n = \frac{198}{3} = 66[/tex]

The sum of the digits for this number is 12:

  • [tex]6 + 6 = 12[/tex]

[tex]======================[/tex]

✒️NUMBERS

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{PROBLEM}:} [/tex]

  • What is the sum of the digits of the number of integers multiples of 3 between 1 and 200?

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{ANSWER}:} [/tex]

[tex] \qquad \Large \:\rm{The \: sum \: is \: 12} [/tex]

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{SOLUTION}:} [/tex]

» Find the first and the last numbers that are divisible by 3 between 1 and 200 which are 3 and 198.

  • [tex] a_1 = 3 \:\: and \:\: a_n = 198 [/tex]

» Find the number of terms using the arithmetic sequence formula. since it's divisible by 3, then the common difference will be 3.

[tex] \begin{align} & \bold{Formula:} \\ & \quad \boxed{\rm a_n = a_1 + d(n-1)} \end{align} [/tex]

  • [tex] 198 = 3 + 3(n-1) [/tex]

  • [tex] 198 = 3 + 3n-3 [/tex]

  • [tex] 198 = 3n [/tex]

  • [tex] \frac{\,198\,}{3} = \frac{\,3n\,}{3}\\ [/tex]

  • [tex] n = 66 [/tex]

[tex] \therefore [/tex] There are 66 numbers that are divisible by 3 between 1 and 200. Now find the sum of the digits of 66.

  • [tex] 6 + 6 = 12 [/tex]

[tex] \therefore [/tex] The sum is 12.

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

(ノ^_^)ノ