Makakuha ng detalyadong mga sagot sa lahat ng iyong tanong sa IDNStudy.com. Alamin ang mga maaasahang sagot sa iyong mga tanong mula sa aming malawak na kaalaman sa mga eksperto.

Solve the equation: (3x + 6)² - 3(2x - 6) = 5x² + 4


NONSENSE WILL BE REPORTED​


Sagot :

Question:

  • Solve the equation: (3x + 6)² - 3(2x - 6) = 5x² + 4

Answer:

  • [tex]\underline{\boxed{\sf{\pink{-\frac{5}{2}}}}}[/tex]

Solution:

Firstly, we should simplify the equation

[tex]\: (3x + 6)^2 - 3(2x - 6) = 5x^2 + 4[/tex]

[tex]\: 9x^2 + 36x + 36 - 6x + 18 - 5x^2 - 4 = 0[/tex]

[tex]\: 4x^2 + 30x + 50 = 0[/tex]

The square equation has the form:

  • [tex]\underline{\boxed{\pink{ax^2 + bx + c}}}[/tex]

In the above equation, these variables are:

[tex]\: a = 4, \: b = 30, \: c = 50[/tex]

Firstly, let's calculate delta

[tex]\: \Delta = b^2 - 4 \times a \times c[/tex]

[tex]\: \Delta = 30 \times 30 - 4 \times 4 \times 50 = 100[/tex]

Delta is greater than zero, so there are 2 solutions. Calculate them from the formulas:

[tex]\: x_1 = \frac{- b - \sqrt{\Delta}}{2 \times a} = \frac{-30 - \sqrt{100}}{2 \times 4} = -5[/tex]

[tex]\: x_2 = \frac{- b + \sqrt{\Delta}}{2 \times a} = \frac{- 30 + \sqrt{100}}{2 \times 4} = -\frac{5}{2}[/tex]

[tex]──────────────────────[/tex]

PROBLEM:

  • (3x + 6)² - 3(2x - 6) = 5x² + 4

______________________

ANSWER:

  • [tex]{\large{\underline{\boxed{\sf{\red{x=\frac{-5}{2} }}}}}}\\{\large{\underline{\boxed{\sf{\red{x=-5 }}}}}}[/tex]

______________________

SOLUTION:

  • So in this problem, we can use Factoring, Quadratic formula, and Completing the Square. But we'll gonna use Factoring.

[tex]\small{ \tt \purple{(3x^2+6)^2-3(2x-6)=5x^2+4}}[/tex]

[tex]\small{ \tt \purple{9x^2+36+36-3(2x-6)=5x^2+4}}[/tex]

[tex]\small{ \tt \purple{9x^2+36+36-6x+18=5x^2+4}}}}[/tex]

[tex]\small{ \tt \purple{9x^2+30+36+18=5x^2+4}}[/tex]

[tex]\small{ \tt \purple{9x^2+30+54=5x^2+4}}[/tex]

[tex]\small{ \tt \purple{9x^2+30+54-5x^2=4}}[/tex]

[tex]\small{ \tt \purple{4x^2+30x+54-4}}[/tex]

[tex]\small{ \tt \purple{4x^2+30x+54-4=0}}[/tex]

[tex]\small{ \tt \purple{4x^2+30x+50=0}}[/tex]

[tex]\small{ \tt \purple{2x^2+15x+25=0}}[/tex]

[tex]\small{ \tt \purple{a+b=15}}\\\small{ \tt \purple{ab=2\times25=50}}\\[/tex]

  • Since ab is positive, a and b have the same sign. Since a + b is positive, a and b are both positive. List all such integer pairs that give that product 50.

[tex]\small{ \tt \purple{1,50}}\\\small{ \tt \purple{2,25}}\\\small{ \tt \purple{5,10}}\\[/tex]

  • Calculate the sum for each pair.

[tex]\small{ \tt \purple{1+50=51}}\\\small{ \tt \purple{2+25=27}}\\\small{ \tt \purple{5+10=15}}\\[/tex]

  • The solution is the pair that gives a sum of 15.

[tex]\small{ \tt \purple{a=5}}\\\small{ \tt \purple{b=10}}\\[/tex]

  • Rewrite [tex]2x ^2 +15x+25[/tex] as [tex](2x^2+5x)+(10x+25).[/tex]

[tex]\small{ \tt \purple{(2x^2+5x)+(10x+25)}}\\[/tex]

  • Factor out x in the first and 5 in the second group.

[tex]\small{ \tt \purple{x(2x+5)+5(2x+5)}}\\[/tex]

  • Factor out the common term 2x + 5 by using the distributive property.

[tex]\small{ \tt \purple{(2x+5)(x+5)}}\\[/tex]

  • To find equation solutions, solve 2x + 5 = 0 and x + 5 = 0.

[tex]\small{ \tt \purple{Answer:}}\\{\large{\underline{\boxed{\sf{\red{x=\frac{-5}{2} }}}}}}\\{\large{\underline{\boxed{\sf{\red{x=-5 }}}}}}[/tex]

______________________

       #CarryOnLearning