IDNStudy.com, ang iyong mapagkukunan ng eksaktong at maaasahang mga sagot. Hanapin ang impormasyon na kailangan mo nang mabilis at madali sa pamamagitan ng aming komprehensibo at eksaktong platform ng tanong at sagot.

Solve the equation: (3x + 6)² - 3(2x - 6) = 5x² + 4


NONSENSE WILL BE REPORTED​


Sagot :

Question:

  • Solve the equation: (3x + 6)² - 3(2x - 6) = 5x² + 4

Answer:

  • [tex]\underline{\boxed{\sf{\pink{-\frac{5}{2}}}}}[/tex]

Solution:

Firstly, we should simplify the equation

[tex]\: (3x + 6)^2 - 3(2x - 6) = 5x^2 + 4[/tex]

[tex]\: 9x^2 + 36x + 36 - 6x + 18 - 5x^2 - 4 = 0[/tex]

[tex]\: 4x^2 + 30x + 50 = 0[/tex]

The square equation has the form:

  • [tex]\underline{\boxed{\pink{ax^2 + bx + c}}}[/tex]

In the above equation, these variables are:

[tex]\: a = 4, \: b = 30, \: c = 50[/tex]

Firstly, let's calculate delta

[tex]\: \Delta = b^2 - 4 \times a \times c[/tex]

[tex]\: \Delta = 30 \times 30 - 4 \times 4 \times 50 = 100[/tex]

Delta is greater than zero, so there are 2 solutions. Calculate them from the formulas:

[tex]\: x_1 = \frac{- b - \sqrt{\Delta}}{2 \times a} = \frac{-30 - \sqrt{100}}{2 \times 4} = -5[/tex]

[tex]\: x_2 = \frac{- b + \sqrt{\Delta}}{2 \times a} = \frac{- 30 + \sqrt{100}}{2 \times 4} = -\frac{5}{2}[/tex]

[tex]──────────────────────[/tex]

PROBLEM:

  • (3x + 6)² - 3(2x - 6) = 5x² + 4

______________________

ANSWER:

  • [tex]{\large{\underline{\boxed{\sf{\red{x=\frac{-5}{2} }}}}}}\\{\large{\underline{\boxed{\sf{\red{x=-5 }}}}}}[/tex]

______________________

SOLUTION:

  • So in this problem, we can use Factoring, Quadratic formula, and Completing the Square. But we'll gonna use Factoring.

[tex]\small{ \tt \purple{(3x^2+6)^2-3(2x-6)=5x^2+4}}[/tex]

[tex]\small{ \tt \purple{9x^2+36+36-3(2x-6)=5x^2+4}}[/tex]

[tex]\small{ \tt \purple{9x^2+36+36-6x+18=5x^2+4}}}}[/tex]

[tex]\small{ \tt \purple{9x^2+30+36+18=5x^2+4}}[/tex]

[tex]\small{ \tt \purple{9x^2+30+54=5x^2+4}}[/tex]

[tex]\small{ \tt \purple{9x^2+30+54-5x^2=4}}[/tex]

[tex]\small{ \tt \purple{4x^2+30x+54-4}}[/tex]

[tex]\small{ \tt \purple{4x^2+30x+54-4=0}}[/tex]

[tex]\small{ \tt \purple{4x^2+30x+50=0}}[/tex]

[tex]\small{ \tt \purple{2x^2+15x+25=0}}[/tex]

[tex]\small{ \tt \purple{a+b=15}}\\\small{ \tt \purple{ab=2\times25=50}}\\[/tex]

  • Since ab is positive, a and b have the same sign. Since a + b is positive, a and b are both positive. List all such integer pairs that give that product 50.

[tex]\small{ \tt \purple{1,50}}\\\small{ \tt \purple{2,25}}\\\small{ \tt \purple{5,10}}\\[/tex]

  • Calculate the sum for each pair.

[tex]\small{ \tt \purple{1+50=51}}\\\small{ \tt \purple{2+25=27}}\\\small{ \tt \purple{5+10=15}}\\[/tex]

  • The solution is the pair that gives a sum of 15.

[tex]\small{ \tt \purple{a=5}}\\\small{ \tt \purple{b=10}}\\[/tex]

  • Rewrite [tex]2x ^2 +15x+25[/tex] as [tex](2x^2+5x)+(10x+25).[/tex]

[tex]\small{ \tt \purple{(2x^2+5x)+(10x+25)}}\\[/tex]

  • Factor out x in the first and 5 in the second group.

[tex]\small{ \tt \purple{x(2x+5)+5(2x+5)}}\\[/tex]

  • Factor out the common term 2x + 5 by using the distributive property.

[tex]\small{ \tt \purple{(2x+5)(x+5)}}\\[/tex]

  • To find equation solutions, solve 2x + 5 = 0 and x + 5 = 0.

[tex]\small{ \tt \purple{Answer:}}\\{\large{\underline{\boxed{\sf{\red{x=\frac{-5}{2} }}}}}}\\{\large{\underline{\boxed{\sf{\red{x=-5 }}}}}}[/tex]

______________________

       #CarryOnLearning

Pinahahalagahan namin ang bawat ambag mo. Magpatuloy sa pagtatanong at pagbibigay ng mga sagot. Sama-sama tayong magtutulungan upang makamit ang mas mataas na antas ng karunungan. Bawat tanong ay may sagot sa IDNStudy.com. Salamat sa pagpili sa amin at sa muling pagkikita.