Suriin ang malawak na saklaw ng mga paksa at makakuha ng mga sagot sa IDNStudy.com. Tuklasin ang mga kumpletong sagot sa iyong mga tanong mula sa aming komunidad ng mga eksperto.
Sagot :
(x-3)^2 = 25
x^2 + 9 - 6x = 25
x^2 - 6x + 9 - 25 = 0
x^2 - 6x - 16 = 0
x^2 - 8x + 2x - 16 = 0
x(x - 8) + 2(x - 8) = 0
(x + 2)(x - 8) = 0
x = -2 , 8
x^2 + 9 - 6x = 25
x^2 - 6x + 9 - 25 = 0
x^2 - 6x - 16 = 0
x^2 - 8x + 2x - 16 = 0
x(x - 8) + 2(x - 8) = 0
(x + 2)(x - 8) = 0
x = -2 , 8
4. [tex](x+3)^2=25[/tex]
[tex] \sqrt{(x+3)^2}= + or-\sqrt{25} [/tex]
[tex]x+3=+or-5[/tex]
[tex]x=5-3[/tex]
[tex]x=2[/tex]
[tex]x=-5-3[/tex]
[tex]x=-8[/tex]
[tex] \left \{ {{x=2} \atop {x=-8}} \right. [/tex]
[tex](s+4)^2=-2s[/tex]
[tex]s^2+8s+16+2s=0[/tex]
[tex]s^2+10s+16=0[/tex]
[tex]s^2+10s=-16[/tex]
[tex]s^2+10s+(5)^2=-16+(5)^2[/tex]
[tex] \sqrt{(s+5)^2}=+or- \sqrt{9} [/tex]
[tex]s+5=+or-3[/tex]
[tex]s=3-5[/tex]
[tex]s=-2[/tex]
[tex]s=-3-5[/tex]
[tex]s=-8[/tex]
[tex] \left \{ {{x=-2} \atop {x=-8}} \right. [/tex]
[tex](2t-3)^2=2t^2+5t-26[/tex]
[tex]4t^2-12t+9=2t^2+5t-26[/tex]
[tex]4t^2-2t^2-12t-5t+9+26=0[/tex]
[tex]2t^2-17t+35=0[/tex]
[tex]2t^2-17t=-35[/tex]
[tex] \frac{2t^2-17t}{2} = \frac{-35}{2} [/tex]
[tex]t^2- \frac{17}{2}t=- \frac{35}{2} [/tex]
[tex]t^2- \frac{17}{2} t+( \frac{17}{4})^2=- \frac{35}{2}+( \frac{17}{4})^2 [/tex]
[tex] \sqrt{(t- \frac{17}{4}) } =+or- \sqrt{ \frac{289}{16} } [/tex]
[tex]t- \frac{17}{4}=+or- \frac{17}{4} [/tex]
[tex]t= \frac{17}{4}+ \frac{17}{4} [/tex]
[tex]t= \frac{34}{4} or \frac{17}{2} [/tex]
[tex]t=- \frac{17}{4}+ \frac{17}{4} [/tex]
[tex]t=0[/tex]
[tex] \left \{ {{t= \frac{17}{2} } \atop {x=0}} \right. [/tex]
[tex]3(x+2)^2=2x^2+3x-8[/tex]
[tex]x^2+4x+4+3=2x^2+3x-8[/tex]
[tex] x^{2} -2 x^{2} +4x-3x+7+8=0[/tex]
[tex]- x^{2} -x+15=0[/tex]
[tex] \frac{- x^{2} -x}{-1} = \frac{-15}{-1} [/tex]
[tex] x^{2} +x+( \frac{1}{2})^2 =15+( \frac{1}{2})^2 [/tex]
[tex] \sqrt{(x+ \frac{1}{2})^2 } =+ or - \sqrt{ \frac{61}{4} } [/tex]
[tex]x+ \frac{1}{2} = +or- \sqrt{ \frac{61}{2} } [/tex] (When you write it on your paper don't include 2 in the square root sign)
[tex]x= \sqrt{ \frac{61-1}{2} } [/tex] (Likewise here, don't include -1/2 in the square root sign)
[tex]x=- \sqrt{ \frac{61-1}{2} } [/tex] (Here too)
5.Yes,
[tex]x^2+5x-14=0[/tex]
[tex](x+7)(x-2)=0[/tex]
[tex]x+7=0[/tex]
[tex]x-2=0[/tex]
[tex]x=-7[/tex]
[tex]x=2[/tex]
[tex]14-5x-x^2=0[/tex]
[tex]-1[14-5x-x^2=0][/tex]
Use distributive property then it will be equal to x²+5x-14=0.
[tex](x-4)^2=9[/tex]
[tex] \sqrt{(x-4)^2} = \sqrt{9} [/tex]
[tex]x-4=+or-3[/tex]
[tex]x=3+4[/tex]
[tex]x=7[/tex]
[tex]x=-3+4[/tex]
[tex]x=1[/tex]
[tex](x+4)^2=9[/tex]
[tex] x^{2} -8x+16-9=0[/tex]
[tex] x^{2} -8x+7=0[/tex]
[tex](x-7)(x-1)=0[/tex]
[tex]x-7=0[/tex]
[tex]x=7[/tex]
[tex]x-1=0[/tex]
[tex]x=1[/tex]
P.S. Done at last... Sorry for the late answers.... Solving it was time consuming... Sorry also because I can't quite get number 7.... I hope this helps you though... :(
[tex] \sqrt{(x+3)^2}= + or-\sqrt{25} [/tex]
[tex]x+3=+or-5[/tex]
[tex]x=5-3[/tex]
[tex]x=2[/tex]
[tex]x=-5-3[/tex]
[tex]x=-8[/tex]
[tex] \left \{ {{x=2} \atop {x=-8}} \right. [/tex]
[tex](s+4)^2=-2s[/tex]
[tex]s^2+8s+16+2s=0[/tex]
[tex]s^2+10s+16=0[/tex]
[tex]s^2+10s=-16[/tex]
[tex]s^2+10s+(5)^2=-16+(5)^2[/tex]
[tex] \sqrt{(s+5)^2}=+or- \sqrt{9} [/tex]
[tex]s+5=+or-3[/tex]
[tex]s=3-5[/tex]
[tex]s=-2[/tex]
[tex]s=-3-5[/tex]
[tex]s=-8[/tex]
[tex] \left \{ {{x=-2} \atop {x=-8}} \right. [/tex]
[tex](2t-3)^2=2t^2+5t-26[/tex]
[tex]4t^2-12t+9=2t^2+5t-26[/tex]
[tex]4t^2-2t^2-12t-5t+9+26=0[/tex]
[tex]2t^2-17t+35=0[/tex]
[tex]2t^2-17t=-35[/tex]
[tex] \frac{2t^2-17t}{2} = \frac{-35}{2} [/tex]
[tex]t^2- \frac{17}{2}t=- \frac{35}{2} [/tex]
[tex]t^2- \frac{17}{2} t+( \frac{17}{4})^2=- \frac{35}{2}+( \frac{17}{4})^2 [/tex]
[tex] \sqrt{(t- \frac{17}{4}) } =+or- \sqrt{ \frac{289}{16} } [/tex]
[tex]t- \frac{17}{4}=+or- \frac{17}{4} [/tex]
[tex]t= \frac{17}{4}+ \frac{17}{4} [/tex]
[tex]t= \frac{34}{4} or \frac{17}{2} [/tex]
[tex]t=- \frac{17}{4}+ \frac{17}{4} [/tex]
[tex]t=0[/tex]
[tex] \left \{ {{t= \frac{17}{2} } \atop {x=0}} \right. [/tex]
[tex]3(x+2)^2=2x^2+3x-8[/tex]
[tex]x^2+4x+4+3=2x^2+3x-8[/tex]
[tex] x^{2} -2 x^{2} +4x-3x+7+8=0[/tex]
[tex]- x^{2} -x+15=0[/tex]
[tex] \frac{- x^{2} -x}{-1} = \frac{-15}{-1} [/tex]
[tex] x^{2} +x+( \frac{1}{2})^2 =15+( \frac{1}{2})^2 [/tex]
[tex] \sqrt{(x+ \frac{1}{2})^2 } =+ or - \sqrt{ \frac{61}{4} } [/tex]
[tex]x+ \frac{1}{2} = +or- \sqrt{ \frac{61}{2} } [/tex] (When you write it on your paper don't include 2 in the square root sign)
[tex]x= \sqrt{ \frac{61-1}{2} } [/tex] (Likewise here, don't include -1/2 in the square root sign)
[tex]x=- \sqrt{ \frac{61-1}{2} } [/tex] (Here too)
5.Yes,
[tex]x^2+5x-14=0[/tex]
[tex](x+7)(x-2)=0[/tex]
[tex]x+7=0[/tex]
[tex]x-2=0[/tex]
[tex]x=-7[/tex]
[tex]x=2[/tex]
[tex]14-5x-x^2=0[/tex]
[tex]-1[14-5x-x^2=0][/tex]
Use distributive property then it will be equal to x²+5x-14=0.
[tex](x-4)^2=9[/tex]
[tex] \sqrt{(x-4)^2} = \sqrt{9} [/tex]
[tex]x-4=+or-3[/tex]
[tex]x=3+4[/tex]
[tex]x=7[/tex]
[tex]x=-3+4[/tex]
[tex]x=1[/tex]
[tex](x+4)^2=9[/tex]
[tex] x^{2} -8x+16-9=0[/tex]
[tex] x^{2} -8x+7=0[/tex]
[tex](x-7)(x-1)=0[/tex]
[tex]x-7=0[/tex]
[tex]x=7[/tex]
[tex]x-1=0[/tex]
[tex]x=1[/tex]
P.S. Done at last... Sorry for the late answers.... Solving it was time consuming... Sorry also because I can't quite get number 7.... I hope this helps you though... :(
Ang iyong kontribusyon ay mahalaga sa amin. Huwag kalimutang bumalik upang magtanong at matuto ng mga bagong bagay. Ang iyong kaalaman ay napakahalaga sa ating komunidad. Ang IDNStudy.com ang iyong mapagkakatiwalaang mapagkukunan ng mga sagot. Salamat at bumalik ka ulit.