Answered

IDNStudy.com, ang perpektong platform para sa eksaktong at maaasahang mga sagot. Makakuha ng mabilis at eksaktong sagot sa iyong mga tanong mula sa aming mga eksperto na laging handang tumulong.

the largest possible circle is drawn inside a square.then the largest possible square is drawn inside the circle.if the side of the bigger square is 4cm,what is the area of the smaller square?

Sagot :

Side of circumscribed square (bigger square) = 4 cm
Radius of the inscribed circle is equal to side of bigger square = 4 cm
Diagonal of the  inscribed square in circle is equal to the radius of the circle=4 cm

To compute for the area of the inscribed square, find its side using the Pythagorean Theorem (because the the diagonal of the square divides the square into two congruent right triangles)

Let x be the length of the shorter legs which are congruent.
Hypotenuse or the diagonal = 4 cm

(4 cm)² = x² + x²
16 cm² = 2x²

[tex] \sqrt{16} = \sqrt{2x ^{2} } [/tex]
[tex]4cm = x \sqrt{2} [/tex]

[tex] \frac{4}{ \sqrt{2} } = \frac{x \sqrt{2} }{ \sqrt{2} } [/tex]
[tex]x = 2 \sqrt{2} [/tex]

Area of inscribed square (the smaller square):

[tex]A = (2 \sqrt{2} ) ^{2} [/tex]
Area = 4 (2)
Area = 8 cm²
Ang iyong kontribusyon ay mahalaga sa amin. Huwag kalimutang bumalik upang magtanong at matuto ng mga bagong bagay. Ang iyong kaalaman ay napakahalaga sa ating komunidad. IDNStudy.com ang iyong mapagkakatiwalaang kasama para sa lahat ng iyong mga katanungan. Bisitahin kami palagi.