Makahanap ng eksaktong solusyon sa iyong mga problema sa IDNStudy.com. Makakuha ng mga sagot sa iyong mga tanong mula sa aming mga eksperto, handang magbigay ng mabilis at tiyak na solusyon.

The largest possible cirle is drawn inside the square. then the largest possible square is drawn inside the circle. if the side of the bigger square is 4cm what is the area of the smaller square?


Sagot :

If you draw the a square inside the inscribed circle, the circle's diameter is also the diagonal of the square inside it.

The side of the square is equal to the diameter of its inscribed circle.

If 4cm is the side of the bigger square, then the diameter of the inscribed circle is also 4 cm, and the diagonal of the smaller circle is also 4 cm.

When a diagonal is drawn inside the square, it divides the square i two equal isosceles triangles. In this problem, the hypotenuse (diagonal) is equal to 4 cm.

To solve for the area of the smaller square, find the side of the isosceles triangle.
Let x be the side:

[tex]4 ^{2} = x^{2} + x^{2} [/tex]
[tex]4 ^{2} = 2 x^{2} [/tex]
[tex] \sqrt{ 4^{2} } = \sqrt{2 x^{2} } [/tex]
[tex]4 = x \sqrt{2} [/tex]

[tex] (\frac{4}{ \sqrt{2} } )( \frac{ \sqrt{2} }{ \sqrt{2} }) =x[/tex]
[tex]x= \frac{4}{2} \sqrt{2} [/tex]
[tex]x = 2 \sqrt{2} [/tex]

Area of big square:
A = (4 cm)²
A = 16 cm²

Area of small square:
=[tex](2 \sqrt{2} ) ^{2} [/tex]
=[tex](4) ( \sqrt{4} ) = (4) (2cm)[/tex]
A = 8 cm²

The area of the small (er) square is 8 cm²