Answered

IDNStudy.com, ang perpektong platform para sa eksaktong at maaasahang mga sagot. Ang aming komunidad ay handang magbigay ng malalim at praktikal na mga solusyon sa lahat ng iyong mga katanungan.

what is the 20th term of an arithmetic sequence is given that its 4th term is 79 and its ninth term is 54?

Sagot :

4th term = 1st term + 3d = 79
9th term = 1st term + 8d = 54

9th term - 4th term 
54 - 79 = (1st term + 8d) - (1st term + 3d)
-25 = 1st term + 8d - 1st term - 3d
-25 = 5d
-5 = d

20th term
= 1st term + 19d
= 9th term + 11d
= 54 + 11(-5)
= 54 - 55
= -1


To find d, let the a₄= a₁.

an= a₁ + (n-1) d
54= 79 + (6-1) d      *6 since we started to count the terms in a₄*
54 = 79 + (5)d
54 - 79 = 5d            * Transpose; combine like terms*
-25= 5d                  * Divide both sides by 5*
   5

-5 = d

Find a₁:

an= a₁ + (n-1) d
54 = a₁ + (9-1) -5
54 = a₁ + (8) -5
54 = a₁ + (-40)
54 + 40 = a₁
94 = a₁

find a₂₀:

an= a₁ + (n-1) d
a₂₀ = 94 + (20 - 1) -5
     = 94 + (19) -5
     = 94 + (-95)
     = -1