Answered

IDNStudy.com, ang iyong destinasyon para sa maaasahan at pangkomunidad na mga sagot. Sumali sa aming platform ng tanong at sagot upang makatanggap ng mabilis at eksaktong tugon mula sa mga propesyonal sa iba't ibang larangan.

what is the 20th term of an arithmetic sequence is given that its 4th term is 79 and its ninth term is 54?

Sagot :

4th term = 1st term + 3d = 79
9th term = 1st term + 8d = 54

9th term - 4th term 
54 - 79 = (1st term + 8d) - (1st term + 3d)
-25 = 1st term + 8d - 1st term - 3d
-25 = 5d
-5 = d

20th term
= 1st term + 19d
= 9th term + 11d
= 54 + 11(-5)
= 54 - 55
= -1


To find d, let the a₄= a₁.

an= a₁ + (n-1) d
54= 79 + (6-1) d      *6 since we started to count the terms in a₄*
54 = 79 + (5)d
54 - 79 = 5d            * Transpose; combine like terms*
-25= 5d                  * Divide both sides by 5*
   5

-5 = d

Find a₁:

an= a₁ + (n-1) d
54 = a₁ + (9-1) -5
54 = a₁ + (8) -5
54 = a₁ + (-40)
54 + 40 = a₁
94 = a₁

find a₂₀:

an= a₁ + (n-1) d
a₂₀ = 94 + (20 - 1) -5
     = 94 + (19) -5
     = 94 + (-95)
     = -1