Tristaidn
Answered

IDNStudy.com, ang iyong destinasyon para sa mabilis at eksaktong mga sagot. Ang aming mga eksperto ay nagbibigay ng mabilis at eksaktong sagot upang tulungan kang maunawaan at malutas ang anumang problema.

s²+4s-21=0

4x²-32x=28

r²-10r=-17

m²+7m-[tex] \frac{51}{9} [/tex]=0

please show your solutions.i need it right now.im so stress because of that.HUHUHU.


Sagot :

[tex]s^2+4s-21=0[/tex]
[tex]s^2+4s=21[/tex]
[tex]s^2+4s+(2)^2=21+(2)^2[/tex]
[tex] \sqrt{(s+2)^2}= \sqrt{25} [/tex]
[tex]s+2=5[/tex]
[tex]s=5-2[/tex]
[tex]s=3[/tex]

[tex]4x^2-32x=28[/tex]
[tex] \frac{4x^2-32x}{4}= \frac{28}{4} [/tex]
[tex]x^2-8x+(4)^2=7+(4)^2[/tex][tex] \sqrt{(x-4)^2} = \sqrt{23} [/tex]
[tex]x-4= \sqrt{23} [/tex]
[tex]x= \sqrt{23}+4 [/tex]
[tex]x=- \sqrt{23}+4 [/tex]

[tex]r^2-10r=-17[/tex]
[tex]r^2-10r+(5)^2=-17+(5)^2[/tex]
[tex] \sqrt{(r-5)^2}= \sqrt{8} [/tex]
[tex]r-5= \sqrt{8} [/tex]
[tex]r= \sqrt{8}+5 [/tex]
[tex]r=- \sqrt{8}+5 [/tex]

[tex]m^2+7m- \frac{51}{9}=0 [/tex]
[tex]m^2+7m= \frac{51}{9} [/tex]
[tex]m^2+7m+( \frac{7}{2})^2= \frac{51}{9}+( \frac{7}{2})^2 [/tex]
[tex] \sqrt{(m+ \frac{7}{2})^2 }= \sqrt{ \frac{215}{12} } [/tex]
[tex]m+ \frac{7}{2} = \sqrt{ \frac{215}{12} } [/tex]
[tex]m= \sqrt{ \frac{215}{12}[/tex][tex]- \frac{7}{2} [/tex]
[tex]m= \sqrt{ \frac{215}{12}} -\frac{42}{12} [/tex]
[tex]m=- \sqrt{ \frac{215}{12} }- \frac{42}{12} [/tex]

Phewww! That was hard but fun! :D Hope that helps ^_^
s² + 4s - 21 = 0
   (s+7) (s-3) = 0
s+7=0  ;  s-3=0
s = -7  ;  s = 3


4x² - 32x = 28
x² - 8x = 7
x² - 8x + 16 = 7 + 16
(x-4)² = 23
√(x-4)² = √23
x - 4 = ±√23
x = ±√23 +4
x = √23 +4    ;   x = -√23 +4


r² - 10r = -17
r² - 10r + 25 = -17 + 25
(r-5)² = 8
√(r-5)² = √8
r-5 = ±√8
r = ±2√2 +5
r = 2√2 +5   ;   r = -2√2 +5


m² +7m - 51/9 = 0
m² +7m = 17/3
m² +7m + (7/2}² = 17/3 + (7/2}²
√(m+7/2)² = √(215/12)
m + 7/2 = ± √(645)/ 6
m = [tex] \frac{ \sqrt{645} }{6} + \frac{7}{2} [/tex]    ;    m =  -\frac{ \sqrt{645} }{6} +  \frac{7}{2}