IDNStudy.com, kung saan ang iyong mga tanong ay natutugunan ng mga eksaktong sagot. Hanapin ang mga solusyong kailangan mo nang mabilis at madali sa tulong ng aming mga eksperto.

pa help sa math tyty







Pa Help Sa Math Tyty class=

Sagot :

✒️CIRCLES

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{PROBLEMS}:} [/tex]

  • 1. If AG = 24 cm, what is AC?

  • 2. If OA = 5 cm and OG = 3 cm, what is CG?

  • 3. If OG = 6 cm and AC = 16 cm, what is BG?

  • 4. If BG = 2 cm and OC = 10 cm, what is AG?

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{ANSWERS}:} [/tex]

[tex] \qquad \Large \: \rm{1) \: AC = 48cm} [/tex]

[tex] \qquad \Large \: \rm{2) \: CG = 4cm} [/tex]

[tex] \qquad \Large \: \rm{3) \: BG = 4cm} [/tex]

[tex] \qquad \Large \: \rm{4) \: AG = 6cm} [/tex]

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{SOLUTIONS}:} [/tex]

First, we need to look in some of its features:

  • Point O is the center of the circle. OC, OA, OB are radii, making them equidistant to each other.

  • Drawing chord AC creating an isosceles ∆AOC.

  • Radius OB is perpendicular to chord AC intersects at point G. Thus, it bisects AC which makes AG ≅ CG.

  • Since OC ≅ OA, OG ≅ OG, AG ≅ CG, then we have created two congruent right triangles ∆CGO and ∆AGO

[tex] \: [/tex]

Solve for the measures:

#1: If AG = 24 cm, what is AC?

  • AG is half of AC. Thus, twice of AG is equal to AC. We can say that twice of 24cm is 48cm. Therefore, AC is 48cm

[tex] \: [/tex]

#2: If OA = 5 cm and OG = 3 cm, what is CG?

» Focus on ∆AGO. Find AG using the Pythagorean Theorem.

  • [tex] (OG)^2 + (AG)^2 = (OA)^2 [/tex]

  • [tex] (3cm)^2 + (AG)^2 = (5cm)^2 [/tex]

  • [tex] 9cm^2 + (AG)^2 = 25cm^2 [/tex]

  • [tex] (AG)^2 = 25cm^2 - 9cm^2 [/tex]

  • [tex] (AG)^2 = 16cm^2 [/tex]

  • [tex] \sqrt{(AG)^2} = \sqrt{16cm^2} [/tex]

  • [tex] AG = 4cm [/tex]

» Thus, AG measures 4cm. We can say that AG is congruent to CG. Therefore, CG is 4cm as well.

[tex] \: [/tex]

#3: If OG = 6 cm and AC = 16 cm, what is BG?

» Focus on any right triangles, like ∆AGO, because we will be finding for the radius. Solve for OA using the Pythagorean Theorem.

  • [tex] (OG)^2 + (AG)^2 = (OA)^2 [/tex]

  • [tex] (6cm)^2 + (AG)^2 = (OA)^2 [/tex]

» We know that AG is half of AC. Thus, half of 16cm is 8cm, which is AG.

  • [tex] (6cm)^2 + (8cm)^2 = (OA)^2 [/tex]

  • [tex] 36cm^2 + 64cm^2 = (OA)^2 [/tex]

  • [tex] 100cm^2 = (OA)^2 [/tex]

  • [tex] \sqrt{100cm^2} = \sqrt{(OA)^2} [/tex]

  • [tex] 10cm = OA [/tex]

» OA measures 10cm. Thus, OB is 10cm as well since it is also a radius. Find BG that is the difference of OB and OG since the sum of the measures of BG and OG is OB.

  • [tex] BG = OB - OG [/tex]

  • [tex] BG = 10cm - 6cm [/tex]

  • [tex] BG = 4cm [/tex]

[tex] \therefore [/tex] BG measures 4cm

[tex] \: [/tex]

#:. If BG = 2 cm and OC = 10 cm, what is AG?

» Focus on ∆AGO. OC is equidistant to OA. Thus, OA is 10cm as well. Find AG using the Pythagorean Theorem.

  • [tex] (OG)^2 + (AG)^2 = (OA)^2 [/tex]

  • [tex] (OG)^2 + (AG)^2 = (10cm)^2 [/tex]

» OB is also a radius, measuring 10cm. The difference of OB and BG is OG.

  • [tex] OG = OB - BG [/tex]

  • [tex] OG = 10cm - 2cm [/tex]

  • [tex] OG = 8cm [/tex]

» OG is 8cm. Substitute it to our solution to find AG.

  • [tex] (8cm)^2 + (AG)^2 = (10cm)^2 [/tex]

  • [tex] 64cm^2 + (AG)^2 = 100cm^2 [/tex]

  • [tex] (AG)^2 = 100cm^2 - 64cm^2 [/tex]

  • [tex] (AG)^2 = 36cm^2 [/tex]

  • [tex] \sqrt{(AG)^2} = \sqrt{36cm^2} [/tex]

  • [tex] AG = 6cm [/tex]

[tex] \therefore [/tex] AG measures 6cm

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

(ノ^_^)ノ