IDNStudy.com, ang perpektong platform para magtanong at makakuha ng maaasahang mga sagot. Ang aming platform ng tanong at sagot ay idinisenyo upang magbigay ng mabilis at eksaktong sagot sa lahat ng iyong mga tanong.

2. Show that diagonals of quadrilateral CUTE are congruent for C(5,-1), U(9,-1), T(9,0) and E(5.0). ​

2 Show That Diagonals Of Quadrilateral CUTE Are Congruent For C51 U91 T90 And E50 class=

Sagot :

Answer:

Swipe the pictures to see problem 1

Problem 1:

Find the length of each side of ∆EXP and ∆ABC

a. E(-3,-2), X(1,-1), P(0,2)

For E(-3,-2), X(1,-1)

use distance formula to get the length of each side

d² = (x₂ - x₁)² + (y₂ - y₁)²

d² = (1 - (-3))² + (-1 - (-2))²

d² = (4²) + (1)²

d² = 16 + 1

d² = 17

d = √17

d = 4.123

For X(1,-1), P(0,2)

d² = (x₂ - x₁)² + (y₂ - y₁)²

d² = (0 - 1)² + (2 - (-1))²

d² = (-1) ² + (3)²

d² = 1 + 9

d² = 10

d = √10

d = 3.162

For E(-3,-2), P(0,2)

d² = (x₂ - x₁)² + (y₂ - y₁)²

d² = (0 - (-3))² + (2 - (-2))²

d² = (3) ² + (4)²

d² = 9 + 16

d² = 25

d = √25

d = 5

b.A(0,8), B(9,6), C(8,10)

For A(0,8), B(9,6)

d² = (x₂ - x₁)² + (y₂ - y₁)²

d² = (9 - 0)² + (6 - 8)²

d² = (9)² + (-2)²

d² = 81 + 4

d² = 85

d = √85

d = 9.2195

For B(9,6), C(8,10)

d² = (x₂ - x₁)² + (y₂ - y₁)²

d² = (8 - 9)² + (10 - 6)²

d² = (-1)² + (4)²

d² = 1 + 16

d² = 17

d = √17

d = 4.123

For A(0,8), C(8,10)

d² = (x₂ - x₁)² + (y₂ - y₁)²

d² = (8 - 0)² + (10 - 8)²

d² = (8)² + (2)²

d² = 64 + 4

d² = 68

d = √68

d = 8.246

Please see attached file for the figure

Problem 2:

Show that ∆LIT is an isosceles right triangle, L(1,-3), I(1,5) and T(9,-3)

Isoscesles triangle is a triangle with 2 sides having equal lengths.

For L(1,-3), I(1,5)

d² = (x₂ - x₁)² + (y₂ - y₁)²

d² = (1 - 1)² + (5 - (-3)²

d² = (0)² + (8)²

d² = 0 + 64

d² = 64

d = √64

d = 8

For I(1,5), T(9,-3)

d² = (x₂ - x₁)² + (y₂ - y₁)²

d² = (9 - 1)² + (-3 - 5)²

d² = (8)² + (-8)²

d² = 64 + 64

d² = 128

d = √128

d = 11.3137

For L(1,-3) T(9,-3)

d² = (x₂ - x₁)² + (y₂ - y₁)²

d² = (9 - 1)² + (-3 - (-3))²

d² = (8)² + (0)²

d² = 64 + 0

d² = 64

d = √64

d = 8

LI = 8, LT = 8, IT = 11.3137

LI and LT have equal sides, therefore, ∆LIT is an isosceles right triangle

Please see attached file for the figure

Problem 3:

Show that the diagonals of rectangle CUTE are congruent for C(5,1), U(9,-1), T(9,0) and E(5,0).

For C(5,1), U(9,-1)

d² = (x₂ - x₁)² + (y₂ - y₁)²

d² = (9 - 5)² + (-1 - 1)²

d² = (4)² + (2)²

d² = 16 + 4

d² = 20

d = √20

d = 4.47

For T(9,0) and E(5,0)

d² = (x₂ - x₁)² + (y₂ - y₁)²

d² = (5 - 9)² + (0 - 0)²

d² = (-4)² + (0)²

d² = 16 + 0

d² = 16

d = √16

d = 4

The diagonals of the rectangle is NOT congruent because diagonal CU ≠ diagonal TE

View image Momomo6
View image Momomo6
View image Momomo6