Magtanong at makakuha ng maliwanag na mga sagot sa IDNStudy.com. Magtanong ng anumang bagay at makatanggap ng kumpleto at eksaktong sagot mula sa aming komunidad ng mga propesyonal.

Find the inverse of f. Determine the domain and range of each resulting inverse functions.
3. f(x) = x+2
Solution:

Domain
Range

4. f(x) = x² + 2
Solution:

Domain
Range

5. f(x) = √1+xX
Solution:

Domain
Range​


Find The Inverse Of F Determine The Domain And Range Of Each Resulting Inverse Functions3 Fx X2Solution Domain Range 4 Fx X 2 SolutionDomain Range 5 Fx 1xX Solu class=

Sagot :

Step-by-step explanation:

Find the inverse of f. Determine the domain and range of each resulting inverse functions.

3. f(x) = x+2

Solution:

Domain

Range

4. f(x) = x² + 2

Solution:

Domain

Range

5. f(x) = √1+xX

Solution:

Domain

RangeFind the inverse of f. Determine the domain and range of each resulting inverse functions.

3. f(x) = x+2

Solution:

Domain

Range

4. f(x) = x² + 2

Solution:

Domain

Range

5. f(x) = √1+xX

Solution:

Domain

Range

Find the inverse of f. Determine the domain and range of each resulting inverse functions.

3. f(x) = x+2

Solution:

y = x+2

interchange x and y;

x = y+2

subtract 2 to both sides of the equation;

x-2 = y

rewrite y as f^-1(x);

[tex]Answer = f^-1(x) = x-2[/tex]

[tex]Domain = {X|x∈ℝ}[/tex]

[tex]Range = {X|x∈ℝ}[/tex]

4. f(x) = x² + 2

Solution:

y = x² + 2

interchange x and y;

x = y² + 2

subtract 2 to both sides of the equation;

x-2 = y²

take the square root of both sides of the equation;

√(x-2) = √(y)²

the square root and the 2 power degree of y will negate;

y = √(x-2)

rewrite y as f^-1(x);

[tex]Answer = f^-1(x) = \sqrt{(x-2)}[/tex]

[tex]Domain = {X| x \geqslant 2}[/tex]

[tex]Range \: = Y|y \geqslant 0[/tex]

5. f(x) = √1+x

Solution:

y = √1+x

interchange x and y;

x = √1+y

square both sides of the equation;

x² = 1+y

subtract 1 to both sides of the equation;

x²-1 = y

rewrite y as f^-1(x);

[tex]Answer = f^-1(x) = x²-1[/tex]

[tex]Domain=X∣x∈R[/tex]

[tex]Range = Y|y≥-1[/tex]