Sumali sa IDNStudy.com at simulang makuha ang maaasahang mga sagot. Sumali sa aming platform ng tanong at sagot upang makatanggap ng mabilis at eksaktong tugon mula sa mga propesyonal sa iba't ibang larangan.

Find the inverse m(x) x²+1

pag di alam ang sagut wag sagutin ok need kuna ngayun to ​


Sagot :

Answer:

First, you have to switch the variables around to find the inverse function, so f(x) = x^2 - 1 becomes x = f(x)^2 - 1. Solving this, we can add 1 to both sides to get x + 1 = f(x)^2. Now we can square root both sides to get f(x) = -sqrt(x + 1) and sqrt(x + 1). We get both the positive and negative values because it’s a square root.

Step-by-step explanation:

plss brainliest me

Answer:

[tex]m(x) = {x}^{2} + 1 \\ y = {x }^{2} + 1 \\ x = {y}^{2} + 1 \\ x - 1 = {y}^{2} + 1 - 1 \\ x - 1 = {y}^{2} [/tex]

[tex] \sqrt{x - 1} = \sqrt{ {y}^{2} } \\ \sqrt{x - 1} = y[/tex]

Therefore, the inverse form is

[tex]m ^{ - 1} (x) = \sqrt{x - 1} [/tex]