Magtanong at makakuha ng mga sagot ng eksperto sa IDNStudy.com. Ang aming mga eksperto ay nagbibigay ng mabilis at eksaktong sagot upang tulungan kang maunawaan at malutas ang anumang problema.

Find the inverse of the following one-to-one functions:
[tex]f(x) = \frac{4x + 1}{3} [/tex]
[tex]f(x) = \frac{x + 2}{x - 1} [/tex]
[tex]f(x) = \frac{x - 3}{x + 2} + 2[/tex]
need ko na po yan now plss pa help nmn po tnx​


Sagot :

Answer:

1 - 3 po ba ung sasa gutan??

View image Sabrhina71

[tex]f(x) = \frac{4x + 1}{3} \\ {f}^{ - 1} (y) = x - - - (1) \\ y = \frac{4x + 1}{3} \\ 3y = 4x + 1 \\ 4x = 3y - 1 \\ x = \frac{3y - 1}{4} putting \: value \: of \: x \\ in \: equation \: 1 \\ {f}^{ - 1} (y) = \frac{3y - 1}{4} \\ replace \: y \: by \: x \\ {f}^{ - 1} (x) = \frac{3x - 1}{4} - - - (2) \\ equation \: 2 \: is \: answer

[/tex]

question 2

[tex]f(x) = \frac{x + 2}{x - 1} \\ {f}^{ - 1}(y) = x - - - - - (1) \\ y = \frac{x + 2}{x - 1} \\ y(x - 1) = x + 2 \\ yx - y = x + 2 \\ yx - x = y + 2 \\ x(y - 1) = y + 2 \\ \frac{x(y - 1)}{y - 1} = \frac{y + 2}{y - 1} \\ x = \frac{y + 2}{y - 1} \\ putting \: the \: value \: of \: x \: in \: 1 \\ {f}^{ - 1}(y) = \frac{y + 2}{y - 1} - - -( 2) \\ replace \: y \: by \: x \: in \: equation \: 2 \\ {f}^{ - 1}(x) = \frac{x + 2}{x - 1} [/tex]