IDNStudy.com, ang iyong gabay para sa maaasahan at mabilis na mga sagot. Sumali sa aming platform ng tanong at sagot upang makatanggap ng mabilis at eksaktong tugon mula sa mga propesyonal sa iba't ibang larangan.

Question: A rectangular lot has an area of 280m². What is the width of the lot if it requires 68meters of fencing materials to enclose it. (use a variable represent the unknown quantity, then write an equation from the given information)​

Sagot :

✏️RECTANGLE

===============================

[tex]\large\bold{\red{PROBLEM:}}[/tex]A rectangular lot has an area of 280m². What is the width of the lot if it requires 68meters of fencing materials to enclose it.

[tex]\large\bold{\red{SOLUTION:}}[/tex] Represents l and w as the length and the width. Formulated equations of the given statement. We have a width is 68 meters.

  • [tex] \begin{gathered} \begin{cases} \sf 68 = 2w + 2l \\ \sf280 = l \times w\end{cases} \end{gathered}[/tex]

  • [tex] \begin{gathered} \begin{cases} \sf 34 = w + l \\ \sf280 = l \times w\end{cases} \end{gathered}[/tex]

  • [tex] \begin{gathered} \begin{cases} \sf 34 = w + l \\ \sf280 = l \times w\end{cases} \end{gathered}[/tex]
  • [tex] \begin{gathered} \begin{cases} \sf w = 34 - l \\ \sf280 = l \times w\end{cases} \end{gathered}[/tex]

- Substitute the second equation in terms of w.

  • [tex] \begin{gathered} \begin{cases} \sf w = 34 - l \\ \sf280 = l \times (34 - l)\end{cases} \end{gathered}[/tex]

  • [tex] \begin{gathered} \begin{cases} \sf w = 34 - l \\ \sf280 = 34l - l^{2} \end{cases} \end{gathered}[/tex]

  • [tex] \begin{gathered} \begin{cases} \sf w = 34 - l \\ \sf l^{2} - 34l + 280 = 0 \end{cases} \end{gathered}[/tex]

- Solve the second equation using the quadratic formula. Make sure it gives the positive situation.

  • [tex] \begin{gathered} \sf l = \frac{ -( - 34) + \sqrt{ {34}^{2} - 4(1)(280)} }{2(1)} \end{gathered}[/tex]

  • [tex] \begin{gathered} \sf l = \frac{ 34 + \sqrt{ 1156 - 4(280)} }{2} \end{gathered}[/tex]

  • [tex] \begin{gathered} \sf l = \frac{ 34 + \sqrt{ 1156 - 1120} }{2} \end{gathered}[/tex]

  • [tex] \begin{gathered} \sf l = \frac{ 34 + \sqrt{ 36}}{2} \end{gathered}[/tex]

  • [tex] \begin{gathered} \sf l = \frac{ 34 + 6}{2} \end{gathered}[/tex]

  • [tex] \begin{gathered} \sf l = \frac{ 40}{2} \end{gathered}[/tex]

  • [tex] \begin{gathered} \sf l = 20 \end{gathered}[/tex]

- Substitute the l from the first equation to find the width.

  • [tex] \begin{gathered} \begin{cases} \sf w = 34 - 20 \\ \sf l = 20\\ \end{cases} \end{gathered}[/tex]

  • [tex] \begin{gathered} \begin{cases} \sf w = 14 \\ \sf l = 20\\ \end{cases} \end{gathered}[/tex]

- Therefore the width of the rectangle lot is:

  • [tex] \large \boxed{ \sf{ \green{14 \: meters}}}[/tex]

===============================

#CarryOnLearning

#LearnWithBrainly

Hindi ko po muna ma-eentertain lahat ng messages niyo sa akin. Busy po kasi ako these month and next month. God bless you po.