IDNStudy.com, kung saan ang iyong mga tanong ay natutugunan ng mga eksaktong sagot. Ang aming mga eksperto ay handang magbigay ng malalim na sagot at praktikal na solusyon sa lahat ng iyong mga tanong.

find the roots of each quadratic equation using the indicated method simplify your answer and check the result write your answer on a separate sheet of paper
A. by extracting square root
1.5x²- 45 = 0
2.(m - 2)² = 16

B. by factoring
1.11p + 15 = -2p²
2.2k² - 14 = -3k

C. by completing the square
1.x² + 15x + 15 = 2 + x
2.-3n² + 4n -59 = -4n²

D.by using the quadratic formula
1.3x² - 5x - 8 = 0
2.11x² + 4x - 52 = 10x² - 7​​



Pa answer po Please​


Sagot :

Answer:

A. By extracting square root

1.5x²- 45 = 0

[tex] \frac{5x²}{5} = \frac{45}{5} \\ \sqrt{{x}^{2}} = \sqrt{ 9} \\ \boxed{ x = 3,-3}[/tex]

[tex] \red{⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉}[/tex]

2.(m - 2)² = 16

[tex]\sqrt{ (m - 2)² }= \sqrt{16} \\ m - 2 = ±4 \\m = 2±4\\ \boxed{ m = 6, - 2}[/tex]

[tex]\red{⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉}[/tex]

B. by factoring

1.11p + 15 = -2p²

[tex]2p² + 11p + 15 = 0 \\ 2p {}^{2} + 6p + 5p + 15 \\ 2p(p + 3) + 5(p + 3) \\ (2p + 5)(p + 3) = 0 \\ \boxed{p = - \frac{5}{2}, - 3}[/tex]

[tex]\purple{⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉}[/tex]

2.2k² - 14 = -3k

[tex]2k² +3k - 14 =0 \\ 2k² + 7k - 4k- 14 =0 \\ k(2k + 7) - 2(2k + 7) = 0 \\ (2k + 7)(k - 2) = 0 \\ \boxed{ k = - \frac{7}{2} ,2}[/tex]

[tex]\purple{⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉}[/tex]

C. by completing the square

1.x² + 15x + 15 = 2 + x

[tex]x² + 15x - x + 15 - 2 = 0 \\ {x}^{2} + 14x + 13 = 0 \\ {x}^{2} + 14x = - 13\\ ( \frac{b}{2} {)}^{2} = (\frac{14}{2} ) {}^{2} = (7) {}^{2} = 49 \\ {x}^{2} + 14x + 49 = - 13 + 49 \\ (x + 7) {}^{2} = 36 \\ \sqrt{(x + 7) {}^{2} } = \sqrt{36} \\ x + 7 = 6 \\ x = - 7±6 \\ \boxed{ x = - 1, - 13}[/tex]

[tex]\green{⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉}[/tex]

2.-3n² + 4n -59 = -4n²

[tex]4n²-3n² + 4n -59 =0 \\ n² + 4n - 59 = 0 \\ n² + 4n = 59 \\ ( \frac{b}{2} ) {}^{2} = (\frac{4}{2} ) {}^{2} = (2 {)}^{2} = 4 \\ n² + 4n + 4 = 59 + 4 \\ (n + 2) {}^{2} = 63 \\ \sqrt{ (n + 2) {}^{2} } = \sqrt{63} \\ n + 2 = ±3 \sqrt{7} \\ \boxed{ n = - 2±3 \sqrt{7} }[/tex]

[tex]\green{⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉}[/tex]

D.by using the quadratic formula

1.3x² - 5x - 8 = 0

[tex]3x² - 5x - 8 = 0 \\ \small{x = \frac{ - ( - 5)± \sqrt{( - 5) {}^{2} - 4(3)( - 8)} }{2(3)} } \\ x = \frac{5± \sqrt{25 + 96} }{6} \\ x = \frac{5± \sqrt{121} }{6} \\ x = \frac{5±11}{6} \\ \boxed{x = \frac{8}{3} , - 1}[/tex]

[tex]\orange{⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉}[/tex]

2.11x² + 4x - 52 = 10x² - 7

[tex]11x² -10x² + 4x - 52 + 7= 0 \\ {x}^{2} + 4x - 45 = 0 \\ x = \frac{ - 4± \sqrt{(4) {}^{2} - 4(1)( - 45)} }{2(1)} \\ x = \frac{ - 4± \sqrt{16 + 180} }{2} \\ x = \frac{ - 4± \sqrt{196} }{2} \\ x = \frac{ - 4±14}{2} \\ \boxed{ x = 5, - 9}[/tex]

[tex]\orange{⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉⑉}[/tex]