Sumali sa IDNStudy.com at simulang makuha ang maaasahang mga sagot. Ang aming platform ay nagbibigay ng mga maaasahang sagot upang matulungan kang gumawa ng matalinong desisyon nang mabilis at madali.
Sagot :
✏️GEOMETRIC SERIES
[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]
[tex] \underline{\mathbb{PROBLEM}:} [/tex]
- 5, 15, 45,.. geometric series of the sum [tex] \sf S_{12} [/tex]
[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••} [/tex]
[tex] \underline{\mathbb{ANSWER}:} [/tex]
[tex] \qquad\Large » \tt\: \green{S_{12} = 1,\!328,\!600 } [/tex]
[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••} [/tex]
[tex] \underline{\mathbb{SOLUTION}:} [/tex]
» Determine the common ratio.
[tex] \begin{align} & \bold{Formula:} \\ & \boxed{r = \frac{a_n}{a_{n-1}}} \end{align} [/tex]
- [tex] r = \frac{a_2}{a_1} = \frac{15}{5} = 3 \\ [/tex]
- [tex] r = \frac{a_3}{a_2} = \frac{45}{15} = 3 \\ [/tex]
» Find the sum of the first 12 terms of the sequence.
[tex] \begin{align} & \bold{Formula:} \\ & \boxed{S_n = \frac{a_1(1-r^n)}{1-r}} \end{align} [/tex]
- [tex] S_{12} = \frac{5(1 - 3^{12})}{1 - 3} \\ [/tex]
- [tex] S_{12} = \frac{5(1 - 531,\!441)}{1 - 3} \\ [/tex]
- [tex] S_{12} = \frac{5(\text-531,\!440)}{\text-2} \\ [/tex]
- [tex] S_{12} = \frac{\text-2,\!657,\!200}{\text-2} \\ [/tex]
- [tex] S_{12} = 1,\!328,\!600 [/tex]
[tex] \therefore [/tex] The sum of the first 12 terms of the geometric sequence is 1,328,600.
[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••} [/tex]
(ノ^_^)ノ
Natutuwa kami na ikaw ay bahagi ng aming komunidad. Magpatuloy sa pagtatanong at pagbibigay ng mga sagot. Sama-sama tayong magtutulungan upang makamit ang mas mataas na antas ng karunungan. Para sa mga de-kalidad na sagot, piliin ang IDNStudy.com. Salamat at bumalik ka ulit sa aming site.