Sumali sa IDNStudy.com at makuha ang mabilis at kaugnay na mga sagot. Magtanong at makakuha ng detalyadong sagot mula sa aming komunidad ng mga eksperto na may kaalaman.
Sagot :
✏️ Sum or Difference of Two Cubes
[tex] {\Large{\overline{\underline{\sf{\hookrightarrow Answer:}}}}} [/tex]
- The correct answer is letter B. The factors of 8q³ + 27 are (2q + 3) and (4q² - 6q + 9).
Solution:
The pattern of factoring the sum or difference of two cubes is:
- [tex] \sf{ a^3 + b^3 = (a + b)(a^2 - ab + b^2) } [/tex], and
- [tex] \sf{ a^3 - b^3 = (a - b)(a^2 + ab + b^2) } [/tex]
First find the cube root of the two terms.
- [tex] \sf{ \sqrt [3] {8q^3} = 2q } [/tex]
- [tex] \sf{ \sqrt [3] {27} = 3 } [/tex]
The sign of [tex] \sf{ b } [/tex] in the linear factor is the same as the sign in the middle of the expression being factored. Thus [tex] \sf{ \sf b } [/tex] is positive, and the linear factor is [tex] \sf{ \sf 2q + 3 } [/tex].
Now follow the pattern for the quadratic factor.
- [tex] \sf{ a^2 - ab + b^2 } [/tex]
- [tex] \sf{ \rightarrow (2q)^2 - (2q)(3) + (3)^2 } [/tex]
- [tex] \sf{ \rightarrow 4q^2 - 6q + 9 } [/tex]
Note that the sign of [tex] \sf{ \sf ab } [/tex] in the quadratic factor is the opposite of the sign of [tex] \sf{ \sf b } [/tex] in the linear factor, and the sign of [tex] \sf{ \sf b^2 } [/tex] is always positive.
Thus, the factored form of [tex] \sf{ 8q^3 + 27 } [/tex] is [tex] {\underline{\green{\sf{(2q + 3)(4q^2 - 6q + 9)}}}} [/tex]. The correct answer is letter B.
[tex]{\: \:}[/tex]
[tex] {\huge{\overline{\sf{Hope\:It\:Helps}}}} [/tex]
#LetsLearn #BeBrainly ✌☺
Salamat sa iyong pakikilahok. Patuloy na magbahagi ng iyong mga ideya at kasagutan. Ang iyong kaalaman ay mahalaga sa ating komunidad. Para sa mabilis at eksaktong mga solusyon, isipin ang IDNStudy.com. Salamat sa iyong pagbisita at sa muling pagkikita.