Sumali sa komunidad ng IDNStudy.com at simulang makuha ang mga sagot. Makakuha ng mga kumpletong sagot sa lahat ng iyong mga tanong mula sa aming network ng mga eksperto.

What are the factors of 8q³ +27
A.(2q - 3) (4q² - 6q + 9)
B.(2q + 3) (4q²-6q+9)
C. (2q-3) (4q² + 6q+9)
D.(2q+3) (4q²+ 6q + 9) ​


Sagot :

✏️ Sum or Difference of Two Cubes

[tex] {\Large{\overline{\underline{\sf{\hookrightarrow Answer:}}}}} [/tex]

  • The correct answer is letter B. The factors of 8q³ + 27 are (2q + 3) and (4q² - 6q + 9).

Solution:

The pattern of factoring the sum or difference of two cubes is:

  • [tex] \sf{ a^3 + b^3 = (a + b)(a^2 - ab + b^2) } [/tex], and
  • [tex] \sf{ a^3 - b^3 = (a - b)(a^2 + ab + b^2) } [/tex]

First find the cube root of the two terms.

  • [tex] \sf{ \sqrt [3] {8q^3} = 2q } [/tex]
  • [tex] \sf{ \sqrt [3] {27} = 3 } [/tex]

The sign of [tex] \sf{ b } [/tex] in the linear factor is the same as the sign in the middle of the expression being factored. Thus [tex] \sf{ \sf b } [/tex] is positive, and the linear factor is [tex] \sf{ \sf 2q + 3 } [/tex].

Now follow the pattern for the quadratic factor.

  • [tex] \sf{ a^2 - ab + b^2 } [/tex]
  • [tex] \sf{ \rightarrow (2q)^2 - (2q)(3) + (3)^2 } [/tex]
  • [tex] \sf{ \rightarrow 4q^2 - 6q + 9 } [/tex]

Note that the sign of [tex] \sf{ \sf ab } [/tex] in the quadratic factor is the opposite of the sign of [tex] \sf{ \sf b } [/tex] in the linear factor, and the sign of [tex] \sf{ \sf b^2 } [/tex] is always positive.

Thus, the factored form of [tex] \sf{ 8q^3 + 27 } [/tex] is [tex] {\underline{\green{\sf{(2q + 3)(4q^2 - 6q + 9)}}}} [/tex]. The correct answer is letter B.

[tex]{\: \:}[/tex]

[tex] {\huge{\overline{\sf{Hope\:It\:Helps}}}} [/tex]

#LetsLearn #BeBrainly ✌☺