IDNStudy.com, ang iyong mapagkukunan para sa mabilis at maaasahang mga sagot. Alamin ang mga maaasahang sagot sa iyong mga tanong mula sa aming malawak na kaalaman sa mga eksperto.

The 2nd term of a geometric sequence is 12 and the 5th term is 768. what is the common ratio?

Sagot :

Answer:

The common ratio is 4

Step-by-step explanation:

Remember that

  • [tex]An = A1r^{n-1}[/tex]

So

  • [tex]A(2) = A1r^{2-1} \: or \: \: \boxed{A1r^1 = 12}[/tex]
  • [tex]A(2) = A1r^{5-1} \: or \: \: \boxed{A1r^4 = 768}[/tex]

Lastly , we eliminate the A1 and solve for the common ratio

[tex] \\ \frac{A1r^4}{ A1r^1} = \frac{768}{12} \\ \\ \frac{ \cancel{A1}r^4}{ \cancel{A1}r^1} = \frac{768}{12} \\ \\ {r}^{3} = 64 \\ \\ r = \sqrt[3]{64} \\ \\ \boxed{ r = 4}[/tex]

Answer:

r=4

Step-by-step explanation:

n= 5-2 = 3

r =

[tex] \sqrt[n]{ \frac{5th \: term}{2nd \: term} } [/tex]

[tex] \sqrt[3]{ \frac{768}{12} } [/tex]

[tex] \sqrt[3]{64} [/tex]

r = 4