IDNStudy.com, ang iyong mapagkakatiwalaang mapagkukunan para sa eksaktong at maaasahang mga sagot. Hanapin ang mga solusyong kailangan mo nang mabilis at madali sa tulong ng aming mga eksperto.

Rewrite the following quadratic functions in form f(x) = a(x-h) ²+ k​

Rewrite The Following Quadratic Functions In Form Fx Axh K class=

Sagot :

[tex] \tt{1.)y = {x}^{2} + 8x + 12 } \\ [/tex]

[tex]\tt y + ( \frac{8}{2} ) {}^{2} = ( {x}^{2} + 8x + ( \frac{8}{2} ) {}^{2} ) + 12[/tex]

[tex]\tt y + 16 = ( {x}^{2} + 8x +16 ) + 12 \\ \tt y + 16 = ( {x} + 4) {}^{2} + 12 \\\tt y = ( {x} + 4) {}^{2} + 12 - 16 \\ \boxed{\red{\tt y = ( {x} + 4) {}^{2} - 4}}[/tex]

[tex] \red{﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌}[/tex]

[tex] \tt{}2.)y = - x {}^{2} - 2x - 70 [/tex]

[tex] \small\tt{y - ( \frac{ - 2}{2}) {}^{2} = -( x {}^{2} + 2x + ( \frac{ - 2}{2}) {}^{2} ) - 70}[/tex]

[tex] \tt{y - 1 = - ({x}^{2} + 2x + 1) } - 70 \\ \tt{y= - ({x} + 1) }^{2} - 70 + 1 \\ \boxed{\red{\tt{y= - ({x} + 1) }^{2} - 69}}[/tex]

[tex] \red{﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌}[/tex]

[tex] \tt3.)y = {x}^{2} - 5x - 6 \\ [/tex]

[tex] \tt{y + ( \frac{ - 5}{2} ) {}^{2} = ({x}^{2} - 5x + ( \frac{ - 5}{2} ) {}^{2})- 6} \\ [/tex]

[tex]y + \frac{25}{4} = ({x}^{2} - 5x + \frac{25}{4} )- 6 \\ y + \frac{25}{4} = ({x} - \frac{5}{2} ) {}^{2} - 6 \\ y = {(x - \frac{5}{2}) }^{2} - 6 - \frac{25}{4} \\ \boxed{ \red{ \tt{y = (x - \frac{5}{2} ) {}^{2} - \frac{49}{4} }}}[/tex]

[tex] \red{﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌}[/tex]

[tex] \tt4.)y = 3 {x}^{2} - 2x + 11 \\ [/tex]

[tex]y = 3( \frac{3 {x}^{2} - 2x }{3} ) + 11 \\ y = 3( {x}^{2} - \frac{2}{3} x) + 11 \\ [/tex]

[tex]y + 3( \frac{1}{9} ) = 3( {x}^{2} - \frac{2}{3} + \frac{1}{9} ) + 11 \\ y + \frac{1}{3} = 3(x - \frac{1}{3} ) {}^{2} + 11 \\ y = 3(x - \frac{1}{3}) {}^{2} + 11 - \frac{1}{3} \\ \boxed{ \red{ \tt{y = 3(x - \frac{1}{3}) {}^{2} + \frac{32}{3} }}}[/tex]

[tex] \red{﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌}[/tex]