IDNStudy.com, ang iyong mapagkukunan para sa malinaw at mabilis na mga sagot. Tuklasin ang mga kumpletong sagot sa iyong mga tanong mula sa aming komunidad ng mga eksperto.

Rewrite the following quadratic functions in form f(x) = a(x-h) ²+ k​

Rewrite The Following Quadratic Functions In Form Fx Axh K class=

Sagot :

[tex] \tt{1.)y = {x}^{2} + 8x + 12 } \\ [/tex]

[tex]\tt y + ( \frac{8}{2} ) {}^{2} = ( {x}^{2} + 8x + ( \frac{8}{2} ) {}^{2} ) + 12[/tex]

[tex]\tt y + 16 = ( {x}^{2} + 8x +16 ) + 12 \\ \tt y + 16 = ( {x} + 4) {}^{2} + 12 \\\tt y = ( {x} + 4) {}^{2} + 12 - 16 \\ \boxed{\red{\tt y = ( {x} + 4) {}^{2} - 4}}[/tex]

[tex] \red{﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌}[/tex]

[tex] \tt{}2.)y = - x {}^{2} - 2x - 70 [/tex]

[tex] \small\tt{y - ( \frac{ - 2}{2}) {}^{2} = -( x {}^{2} + 2x + ( \frac{ - 2}{2}) {}^{2} ) - 70}[/tex]

[tex] \tt{y - 1 = - ({x}^{2} + 2x + 1) } - 70 \\ \tt{y= - ({x} + 1) }^{2} - 70 + 1 \\ \boxed{\red{\tt{y= - ({x} + 1) }^{2} - 69}}[/tex]

[tex] \red{﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌}[/tex]

[tex] \tt3.)y = {x}^{2} - 5x - 6 \\ [/tex]

[tex] \tt{y + ( \frac{ - 5}{2} ) {}^{2} = ({x}^{2} - 5x + ( \frac{ - 5}{2} ) {}^{2})- 6} \\ [/tex]

[tex]y + \frac{25}{4} = ({x}^{2} - 5x + \frac{25}{4} )- 6 \\ y + \frac{25}{4} = ({x} - \frac{5}{2} ) {}^{2} - 6 \\ y = {(x - \frac{5}{2}) }^{2} - 6 - \frac{25}{4} \\ \boxed{ \red{ \tt{y = (x - \frac{5}{2} ) {}^{2} - \frac{49}{4} }}}[/tex]

[tex] \red{﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌}[/tex]

[tex] \tt4.)y = 3 {x}^{2} - 2x + 11 \\ [/tex]

[tex]y = 3( \frac{3 {x}^{2} - 2x }{3} ) + 11 \\ y = 3( {x}^{2} - \frac{2}{3} x) + 11 \\ [/tex]

[tex]y + 3( \frac{1}{9} ) = 3( {x}^{2} - \frac{2}{3} + \frac{1}{9} ) + 11 \\ y + \frac{1}{3} = 3(x - \frac{1}{3} ) {}^{2} + 11 \\ y = 3(x - \frac{1}{3}) {}^{2} + 11 - \frac{1}{3} \\ \boxed{ \red{ \tt{y = 3(x - \frac{1}{3}) {}^{2} + \frac{32}{3} }}}[/tex]

[tex] \red{﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌﹌}[/tex]