IDNStudy.com, kung saan nagtatagpo ang mga eksperto para sagutin ang iyong mga tanong. Ang aming komunidad ay nagbibigay ng eksaktong sagot upang matulungan kang maunawaan at malutas ang anumang problema.

V.
Give the slope of a line given two points.
17. (-2,4) and (1,6)
18. (-3,-1) and (5,-5)​


Sagot :

✏️SLOPES

[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••} [/tex]

[tex] \underline{\mathbb{DIRECTIONS}:} [/tex]

Give the slope of a line given two points.

  • 17. (-2, 4) and (1, 6)
  • 18. (-3, -1) and (5, -5)

[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••} [/tex]

[tex] \underline{\mathbb{ANSWER}:} [/tex]

[tex] \qquad\large 17) \LARGE\tt\: \green{\frac{\,4\,}{3}} [/tex]

[tex] \qquad\large 18) \LARGE \tt\: \green{\text-\frac{\,1\,}{2}} [/tex]

[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••} [/tex]

[tex] \underline{\mathbb{SOLUTION}:} [/tex] Use the slope formula to find the slope of the given two points.

[tex] \begin{align} & \bold{Formula:} \\ & \boxed{Slope(m) = \frac{y_2-y_1}{x_2-x_1}} \end{align} [/tex]

#17:

  • [tex] m = \frac{6-2}{1-(\text-2)} \\ [/tex]

  • [tex] m = \frac{6-2}{1+2} \\ [/tex]

  • [tex] m = \frac{\,4\,}{3} \\ [/tex]

[tex] \therefore [/tex] The slope of the given two points is 4/3.

#18:

  • [tex] m = \frac{\text-5-(\text-1)}{5-(\text-3)} \\ [/tex]

  • [tex] m = \frac{\text-5 + 1}{5 + 3} \\ [/tex]

  • [tex] m = \frac{\,\text-4\,}{8} \\ [/tex]

  • [tex] m = \text{ -- }\frac{\,1\,}{2} \\ [/tex]

[tex] \therefore [/tex] The slope of the given two points is -1/2.

[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••} [/tex]

(ノ^_^)ノ

[tex] \red{•••••••••••••••••••••••••••••••••••••••••••••}[/tex]

QUSTION:

Give the slope of a line given two points.

(#17.)

FORMULA:

∵The slope of a line passing through the two points.

  • [tex]P = (^{x}2 ,^{y} 2) \\ [/tex]
  • [tex]Q = ( ^{x} 2.^{y} 2) \\ [/tex]
  • [tex]M = \frac{^{y} 2 - ^{y} 1}{^{x}2 - ^{x} 1 } \\ [/tex]

∵Plug the given values into the formula for slope.

  • [tex]m = \frac{(6) - (4)}{(1) - (2)} = \frac{2}{ - 1} = - 2 \\ [/tex]

∵Now, the y-intercept is

  • [tex] \boxed{ b = ^{y}1 - m \: \times ^{x}1 }[/tex]

  • [tex] \boxed{b = ^{y} 2 - m \: \times ^{x} 2}[/tex]

∵The result is the same.

  • [tex] \boxed{b = 4 - ( - 2) \times (2) = 8 .}[/tex]

∵Finally, the equation of the line can be written in the form.

  • y=mx+b

  • [tex]y=−2x+8.[/tex]

»The slope of the line is

  • [tex] \boxed{ \frac{4}{3} }[/tex]

(#18.)

  • [tex] \boxed{(-3,-1) and (5,-5)}[/tex]

  • [tex]m = \frac{( - 5) - ( - 1)}{(5) - ( - 3)} = \frac{ - 4}{8} = - \frac{ 1}{2} \\ [/tex]

  • [tex]b = - 1 - ( - \frac{1 }{2} ) \times ( - 3) = - \frac{5}{2} \\ [/tex]

  • [tex]y = - \frac{1}{2} x - \frac{5}{2} . \\ [/tex]

Result:

  • [tex] \boxed{m = - \frac{1}{2} } \\ [/tex]

[tex] \red{••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]

#CarryOnLearning

(ノ^_^)ノ