Makakuha ng mabilis at maaasahang mga sagot sa IDNStudy.com. Anuman ang kahirapan ng iyong mga tanong, ang aming komunidad ay may mga sagot na kailangan mo.
Sagot :
Answer:
Given a function f(x) = y, to find the range of f(x) is to solve for the value of x using the same function
If y is in denominator, the range of the function is all values of y wherein the denominator is ≠ 0
If y is in numerator or the function is an equation, then the range is all Real numbers ℝ
If the function is a radical and y is in the radicand, then the range is all values of y where the radicand > - 1
\:
1. y = 3x + 2
\implies x = \frac{y-2}{3}⟹x=3y−2
Since y is in numerator, then the range is all Real numbers ℝ
Range = ℝ
\:
2. x + y = 8
\implies x = 8 - y⟹x=8−y
Since the function is a linear function, then the range is all Real numbers ℝ
Range = ℝ
\:
3. y = 5x - 1
\implies x = \frac{y+1}{5}⟹x=5y+1
Since y is in numerator, then the range is all Real numbers ℝ
Range = ℝ
\:
4. y = 3x²
\implies \sqrt{3y}⟹3y
Since the function is a radical, then the range is all values of y where √(3y) > - 1
\:
From the inequality √(3y) > - 1, we can already solve for the range
\implies \sqrt{3y}\gt - 1⟹3y>−1
\implies {\sqrt{3y}}^{2}\gt - 1^2⟹3y2>−12
\implies 3y\gt 1⟹3y>1
\therefore y\gt\frac{1}{3}∴y>31
Range = y > ⅓
\:
5. y = 2x - ½
\implies x = \frac{2y+1}{4}⟹x=42y+1
Since y is in numerator, then the range is all Real numbers ℝ
Range = ℝ
\:
6. x - 2y = 6
\implies x = 6 + 2y⟹x=6+2y
Since the function is a linear function, then the range is all Real numbers ℝ
Range = ℝ
\:
7. y = (x² - 1) / 1
\implies x = \sqrt{y+1}⟹x=y+1
Since the function is a radical, then the range is all values of y where √(y+1) > - 1
\:
From the inequality √(y+1) > - 1, we can already solve for the range
\implies \sqrt{y+1}\gt - 1⟹y+1>−1
\implies {\sqrt{y+1}}^{2}\gt - 1^2⟹y+12>−12
\implies y+1\gt 1⟹y+1>1
\therefore y\gt 0∴y>0
Range = y > 0
\:
8. x = y - 3
Since the function is a linear function, then the range is all Real numbers ℝ
Range = ℝ
\:
9. y = x² - 4x - 3
Since the function is a quadratic equation, then the range is all Real numbers ℝ
Range = ℝ
\:
10. y = (x - 1)(x + 1)
\implies x = \sqrt{y+1}⟹x=y+1
Since the function is a radical, then the range is all values of y where √(y+1) > - 1
\:
From the inequality √(y+1) > - 1, we can already solve for the range
\implies \sqrt{y+1}\gt - 1⟹y+1>−1
\implies {\sqrt{y+1}}^{2}\gt - 1^2⟹y+12>−12
\implies y+1\gt 1⟹y+1>1
\therefore y\gt 0∴y>0
Range = y > 0
Salamat sa iyong pakikilahok. Huwag kalimutang magtanong at magbahagi ng iyong kaalaman. Ang iyong ambag ay napakahalaga sa aming komunidad. Ang IDNStudy.com ang iyong mapagkakatiwalaang mapagkukunan ng mga sagot. Salamat at bumalik ka ulit.