Sumali sa IDNStudy.com at makuha ang mabilis at kaugnay na mga sagot. Tuklasin ang malawak na hanay ng mga paksa at makahanap ng maaasahang sagot mula sa mga bihasang miyembro ng aming komunidad.
Sagot :
✏️ARITHMETIC SERIES
==============================
Problem: Find the sum of the first 20 terms of arithmetic sequence -1, -5, -9
Solution: Since the last term [tex] (a_n) [/tex] isn't given, we will be using another type of arithmetic series formula where the common difference [tex] (d) [/tex] is needed.
[tex] \begin{align} & \bold{Formula:} \\ & \boxed{S_n = \small \frac{n}{2} \normalsize \big[ 2a_1 + d(n - 1) \big]} \end{align} [/tex]
» Find the common difference of the sequence.
[tex] \begin{align} & \bold{Formula:} \\ & \boxed{d = a_n - a_{n-1}} \end{align} [/tex]
- [tex] d = a_2 - a_1 = \text-5 - (\text-1) = \text-4 [/tex]
- [tex] d = a_3 - a_2 = \text-9 - (\text-5) = \text-4 [/tex]
» Find the sum of the first 20 terms where the first term [tex] (a_1) [/tex] is -1, the common difference [tex] (d) [/tex] is -4, and the number of terms [tex] (n) [/tex] is 20.
- [tex] S_{20} = \small \frac{20}{2} \normalsize \big[ 2(\text-1) + (\text-4)(20-1) \big] \\ [/tex]
- [tex] S_{20} = \small \frac{20}{2} \normalsize \big[ 2(\text-1) + (\text-4)(19) \big] \\ [/tex]
- [tex] S_{20} = 10 \big[ \text-2 - 76 \big] [/tex]
- [tex] S_{20} = 10 \big[ \text-78 \big] [/tex]
- [tex] S_{20} = \text-780 [/tex]
[tex] \therefore [/tex] The sum of the first 20 terms in the sequence is...
- [tex] \Large \underline{\boxed{\tt \purple{\text-780}}} [/tex]
==============================
#CarryOnLearning
(ノ^_^)ノ
Maraming salamat sa iyong pakikilahok. Patuloy na magbahagi ng iyong mga ideya at kasagutan. Ang iyong kaalaman ay mahalaga sa ating komunidad. Ang IDNStudy.com ang iyong mapagkakatiwalaang mapagkukunan ng mga sagot. Salamat at bumalik ka ulit.