Makahanap ng mga solusyon at sagot sa lahat ng iyong katanungan sa IDNStudy.com. Sumali sa aming komunidad ng mga bihasa upang makahanap ng mga sagot na kailangan mo sa anumang paksa o problema.

HELP PLEASE MOW NAPO SANA​

HELP PLEASE MOW NAPO SANA class=

Sagot :

Sureeeeee

A.)

1.) Find the 19th term of the sequence for which [tex]a_1=15[/tex] and [tex]d=-3[/tex].

Solution:

[tex]a_n=a_1+(n-1)d[/tex]

[tex]a_{19}=15+(19-1)(-3)[/tex]

[tex]a_{19}=15+(18)(-3)[/tex]

[tex]a_{19}=15-54[/tex]

[tex]a_{19}=39[/tex]

2.) Find the 12th term of the sequence for which [tex]a_1=4[/tex] and [tex]d=\frac{1}{2}[/tex].

Solution:

[tex]a_n=a_1+(n-1)d[/tex]

[tex]a_{12}=4+(12-1)(\frac{1}{2})[/tex]

[tex]a_{12}=4+(11)(\frac{1}{2})[/tex]

[tex]a_{12}=4+\frac{11}{2}[/tex]

[tex]a_{12}=\frac{4}{1} +\frac{11}{2}[/tex]

[tex]a_{12}=\frac{8+11}{2}[/tex]

[tex]a_{12}=\frac{19}{2}[/tex]

B.)

1.) In the arithmetic sequence -4, 0, 4, 8, ... which term equals 116?

Solution:

[tex]a_n=a_1+(n-1)d[/tex]

[tex]116=-4+(n-1)(4)[/tex]

[tex]116=-4+4n-4[/tex]

[tex]116+4+4=+4n[/tex]

[tex]4n=124[/tex]

[tex]\frac{4n}{4} = \frac{124}{4}[/tex]

[tex]n = 31[/tex]st term

2.) In the arithmetic sequence 27, 21, 15, 9, ... which term equals -93?

Solution:

[tex]a_n=a_1+(n-1)d[/tex]

[tex]-93=27+(n-1)(-6)[/tex]

[tex]-93=27-6n+6[/tex]

[tex]-93-27-6=-6n[/tex]

[tex]-6n=-126[/tex]

[tex]\frac{-6n}{-6} =\frac{-126}{-6}[/tex]

[tex]n = 21[/tex]st term