Makahanap ng mga eksaktong solusyon sa iyong mga problema gamit ang IDNStudy.com. Makakuha ng hakbang-hakbang na mga gabay para sa lahat ng iyong teknikal na tanong mula sa mga miyembro ng aming komunidad.

If for given arithmetic progression series sum of first 25 terms = - 450 and sum of first 56 terms = 1596 then find sum of its first 100 terms.

Need Solution.​


Sagot :

FIND THE SUM

====================

As we know general formula for finding out sum of first n terms of arithmetic progression series is :

[tex]\\[/tex]

[tex]\tt{S_n= \frac{n}{2} *(2a+(n-1) d)}[/tex]

[tex]\\[/tex]

Here, S_25 = - 450, S_56 = 1596 and we have to find S_100

[tex]\\[/tex]

Now from above formula;

[tex]\\[/tex]

[tex]\tt{S_{25}= 25/2 * (2a+(n-1)d)}[/tex]

[tex] \tt∴ -450 = 25/2 * (2a+(25-1)d) [/tex]

[tex] \tt∴ -450 = 25/2 * (2a+24d)[/tex]

[tex]\tt∴ -450 = 25 (a+12d)[/tex]

[tex]\tt∴ a+12d = -450/25 [/tex]

[tex]\tt∴ a+12d+18 = 0 --- EQ (1) [/tex]

[tex]\\[/tex]

Now,

[tex]\\[/tex]

[tex]\tt{S_{56}=56/2 * (2a+(56-1)d)}[/tex]

[tex]\tt∴ 1596 = 28 * (2a+55d) [/tex]

[tex]\tt∴ 2a+55d = 1596/28 [/tex]

[tex]\tt∴ 2a+55d = 57 [/tex]

[tex]\tt∴ 2a+55d-57 = 0 --- EQ (2) [/tex]

[tex]\\[/tex]

Here, we have got two linear equations by solving those equations we can get value of a and d.

Two solve above equations we have to multiply first equation by 2 so we will get;

[tex]\\[/tex]

[tex]\tt2a+24d+36=0 -- EQ (1) [/tex]

[tex]\\[/tex]

Now from subtracting EQ (1) from EQ(2) we will get;

[tex]\\[/tex]

[tex]\tt 31d - 93 = 0[/tex]

[tex]\tt∴ 31d - 93 = 0[/tex]

[tex]\tt∴ 31d = 93[/tex]

[tex]\tt∴ d = 93/31[/tex]

[tex]\tt∴ d = 3[/tex]

[tex]\\[/tex]

Now putting value of d into EQ(2) we will get..

[tex]\\[/tex]

[tex] \tt 2a + 55 * (3) - 57 = 0[/tex]

[tex] \tt∴ 2a + 165 - 57 = 0[/tex]

[tex] \tt∴ 2a + 108 = 0[/tex]

[tex] \tt∴ 2a = -108 [/tex]

[tex] \tt∴ a = -54 [/tex]

[tex]\\[/tex]

Now we have values of a = -54 and d = 30 so we can easily find S100 as below

[tex]\\[/tex]

[tex] \tt{S_{100}= 100/2 * (2(-54)+(100-1)3)}[/tex]

[tex]\tt∴ S_{100} = 50 * (-108+99*3)[/tex]

[tex]\tt∴ S_{100} = 50 * (-108+297)[/tex]

[tex]\tt∴ S_{100} = 50 * (189)[/tex]

[tex]\tt∴ S_{100} = 50 * (189)[/tex]

[tex]\tt∴ S_{100} = 9450[/tex]

[tex]\\[/tex]

So the Final Answer is,

[tex]\large\tt{S_{100} = \orange{9450}}[/tex]

====================

#Hope It helps :)

✍ BADGX