Makahanap ng mabilis na mga solusyon sa iyong mga problema sa IDNStudy.com. Magtanong at makakuha ng detalyadong sagot mula sa aming komunidad ng mga eksperto.

If for given arithmetic progression series sum of first 25 terms = - 450 and sum of first 56 terms = 1596 then find sum of its first 100 terms.

Need Solution.​


Sagot :

FIND THE SUM

====================

As we know general formula for finding out sum of first n terms of arithmetic progression series is :

[tex]\\[/tex]

[tex]\tt{S_n= \frac{n}{2} *(2a+(n-1) d)}[/tex]

[tex]\\[/tex]

Here, S_25 = - 450, S_56 = 1596 and we have to find S_100

[tex]\\[/tex]

Now from above formula;

[tex]\\[/tex]

[tex]\tt{S_{25}= 25/2 * (2a+(n-1)d)}[/tex]

[tex] \tt∴ -450 = 25/2 * (2a+(25-1)d) [/tex]

[tex] \tt∴ -450 = 25/2 * (2a+24d)[/tex]

[tex]\tt∴ -450 = 25 (a+12d)[/tex]

[tex]\tt∴ a+12d = -450/25 [/tex]

[tex]\tt∴ a+12d+18 = 0 --- EQ (1) [/tex]

[tex]\\[/tex]

Now,

[tex]\\[/tex]

[tex]\tt{S_{56}=56/2 * (2a+(56-1)d)}[/tex]

[tex]\tt∴ 1596 = 28 * (2a+55d) [/tex]

[tex]\tt∴ 2a+55d = 1596/28 [/tex]

[tex]\tt∴ 2a+55d = 57 [/tex]

[tex]\tt∴ 2a+55d-57 = 0 --- EQ (2) [/tex]

[tex]\\[/tex]

Here, we have got two linear equations by solving those equations we can get value of a and d.

Two solve above equations we have to multiply first equation by 2 so we will get;

[tex]\\[/tex]

[tex]\tt2a+24d+36=0 -- EQ (1) [/tex]

[tex]\\[/tex]

Now from subtracting EQ (1) from EQ(2) we will get;

[tex]\\[/tex]

[tex]\tt 31d - 93 = 0[/tex]

[tex]\tt∴ 31d - 93 = 0[/tex]

[tex]\tt∴ 31d = 93[/tex]

[tex]\tt∴ d = 93/31[/tex]

[tex]\tt∴ d = 3[/tex]

[tex]\\[/tex]

Now putting value of d into EQ(2) we will get..

[tex]\\[/tex]

[tex] \tt 2a + 55 * (3) - 57 = 0[/tex]

[tex] \tt∴ 2a + 165 - 57 = 0[/tex]

[tex] \tt∴ 2a + 108 = 0[/tex]

[tex] \tt∴ 2a = -108 [/tex]

[tex] \tt∴ a = -54 [/tex]

[tex]\\[/tex]

Now we have values of a = -54 and d = 30 so we can easily find S100 as below

[tex]\\[/tex]

[tex] \tt{S_{100}= 100/2 * (2(-54)+(100-1)3)}[/tex]

[tex]\tt∴ S_{100} = 50 * (-108+99*3)[/tex]

[tex]\tt∴ S_{100} = 50 * (-108+297)[/tex]

[tex]\tt∴ S_{100} = 50 * (189)[/tex]

[tex]\tt∴ S_{100} = 50 * (189)[/tex]

[tex]\tt∴ S_{100} = 9450[/tex]

[tex]\\[/tex]

So the Final Answer is,

[tex]\large\tt{S_{100} = \orange{9450}}[/tex]

====================

#Hope It helps :)

✍ BADGX