Makakuha ng detalyadong mga sagot sa lahat ng iyong katanungan sa IDNStudy.com. Magtanong ng anumang bagay at makatanggap ng mga maalam na sagot mula sa aming komunidad ng mga propesyonal.

The length of a rectangle is 8 more than twice it's width.If the area of the rectangle is 24 sq. meters,find its dimensions​

Sagot :

✏️AREA

==============================

[tex] \large \bold{\blue{PROBLEM:}} [/tex]The length of a rectangle is 8 more than twice it's width.If the area of the rectangle is 24 sq. meters, find its dimensions.

[tex] \large \bold{\blue{SOLUTION:}} [/tex] Represent 'l' and 'w' as the length and the width respectively. Make equations on the given statements and use the formula on how to find the area of a rectangle.

  • [tex] \begin{cases} l = 2w + 8 \\ 24 = l \cdot w \end{cases} \: \begin{align} \red{(eq. \: 1)} \\ \red{(eq. \: 2)} \end{align} [/tex]

» Substitute the value of 'l' in terms of 'w' into the second equation.

  • [tex] \begin{cases} l = 2w + 8 \\ 24 = (2w + 8) \cdot w \end{cases} [/tex]

  • [tex] \begin{cases} l = 2w + 8 \\ 24 = 2w^2 + 8w \end{cases} [/tex]

  • [tex] \begin{cases} l = 2w + 8 \\ 2w^2 + 8w - 24 = 0 \end{cases} [/tex]

» Solve the second equation using the quadratic formula. Make sure that the solution has the positive result.

  • [tex] w = \frac{-8 \pm \sqrt{8^2 - 4(2)(-24)}}{2(2)} \\ [/tex]

  • [tex] w = \frac{-8 \pm \sqrt{64 + 192}}{4} \\ [/tex]

  • [tex] w = \frac{-8 \pm \sqrt{256}}{4} \\ [/tex]

  • [tex] w = \frac{-8 \pm 16}{4} \\ [/tex]

  • [tex] w = \frac{-8 + 16}{4} \\ [/tex]

  • [tex] w = \frac{8}{4} \\ [/tex]

  • [tex] w = 2 [/tex]

  • [tex] \begin{cases} l = 2w + 8 \\ w = 2 \end{cases} [/tex]

» After finding the length of the width, substitute it to the first equation to find the length.

  • [tex] \begin{cases} l = 2(2) + 8 \\ w = 2\end{cases} [/tex]

  • [tex] \begin{cases} l = 4 + 8 \\ w = 2 \end{cases} [/tex]

  • [tex] \begin{cases} l = 12 \\ w = 2 \end{cases} [/tex]

[tex] \large \therefore \underline{\boxed{\tt \purple{l = 12 \: meters, \: w = 2 \: meters}}} [/tex]

==============================

#CarryOnLearning

(ノ^_^)ノ

[tex] \huge{\bold{ Answer: }}[/tex]

[tex] \bold{length = 12m} \\ \bold{width = 2m}[/tex]

Solution:

We know that :

  • Area of rectangle = length × width

Given :

  • Area of the rectangle = 24 m[tex]^{2}[/tex]
  • The length of a rectangle is 8 more than twice it's width.

_________________________________

Let x be the width of rectangle

Therefore :

[tex] Length = 2x + 8 \\ x(2x + 8) = 24 \\ 2x^{2} + 8x = 24 \\ 2x^{2} + 8x - 24 = 0 \\ x^{2} + 4x - 12 = 0 \\ (x+6)(x-2)=0 \\ (x+6)=0 \: or \: (x=2)=0 \\ x=-6 \: or \: x=2[/tex]

_________________________________

Hence width = 2m

Length = 2 × 2 + 8 = 4 + 8 = 12m

_________________________________

(/^_^)/