IDNStudy.com, kung saan nagtatagpo ang mga tanong at sagot. Makakuha ng hakbang-hakbang na mga gabay para sa lahat ng iyong teknikal na tanong mula sa mga miyembro ng aming komunidad na may kaalaman.

1. Using quadratic formula, what are the roots of x² + 2x - 2=0?​

Sagot :

✏️ QUADRATIC

==============================

[tex] \large \bold{\blue{PROBLEM:}} [/tex] Using quadratic formula, what are the roots of...

  • [tex] x^2 + 2x - 2=0 [/tex]

[tex] \large \bold{\blue{SOLUTION:}} [/tex] Identify the values of a, b, and c in standard form.

  • [tex] \boxed{ax^2 + bx + c = 0} [/tex]

  • [tex] a = 1, \: b = 2, \: c = -2 [/tex]

» Use the quadratic formula to identify its roots.

  • [tex] \boxed{x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}} \\ [/tex]

  • [tex] x = \frac{-2 \pm \sqrt{2^2 - 4(1)(-2)}}{2(1)} \\ [/tex]

  • [tex] x = \frac{-2 \pm \sqrt{4 + 8}}{2} \\ [/tex]

  • [tex] x = \frac{-2 \pm \sqrt{12}}{2} \\ [/tex]

  • [tex] x = \frac{-2 \pm 2\sqrt{3}}{2} \\ [/tex]

  • [tex] x = \frac{\cancel2(-1 \pm \sqrt{3})}{\cancel2} \\ [/tex]

  • [tex] x = -1 \pm \sqrt{3} [/tex]

[tex] \large \therefore \underline{\boxed{\tt \purple{x = -1 + \sqrt3, \: x = -1 - \sqrt3}}} [/tex]

==============================

#CarryOnLearning

(ノ^_^)ノ

✏️QUADRATIC EQUATION

What are the roots of x² + 2x - 2 = 0?

- The standard form of a quadratic equation is ax² + bx + c = 0, where a, b are the coefficients, x is the variable, and c is the constant term.

  • [tex]\sf{{x² + 2x - 2 = 0}}[/tex]

- Using the Quadratic Formula where a = 1, b = 2, and c = -2

  • [tex]\huge \sf{{x = \frac {-b \: ± \: \sqrt{ {b}^{2} - 4ac} } {2a}}} [/tex]

- Substitute all the given

  • [tex]\large \sf{{x = \frac {-2 \: ± \: \sqrt{ {2}^{2} \: - \: 4(1)( - 2)}} {2(1)}}} [/tex]

  • [tex]\large \sf{{x = \frac {-2 \: ± \: \sqrt{4 - ( - 8)} } {2}}} [/tex]

  • [tex]\large \sf{{x = \frac {-2 \: ± \: \sqrt{12} } {2}}} [/tex]

- Simplify the Radical

  • [tex]\large \sf{{x = \frac {-2 \: ± \: 2 \sqrt{3} } {2}}} [/tex]

  • [tex]\large \sf{{x = \frac {-2}{2} ±\frac{ \cancel2 \sqrt{3} } {\cancel2}}} [/tex]

  • [tex]\large \sf{{x = - 1±{ } { \sqrt{3}}}} [/tex]

[tex]\large \underline{\boxed{\tt \blue {Therefore \: the \: answer \: is \: {\green{x = - 1 + \sqrt{3} , - 1 - \sqrt{3} }}}}} [/tex]

#CarryOnLearning

#LearnWithBrainly